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Preface
The Java virtual machine specification has been written to fully document the design of the Java virtual
machine. It is essential for compiler writers who wish to target the Java virtual machine and for programmers
who want to implement a compatible Java virtual machine. It is also a definitive source for anyone who wants
to know exactly how the Java programming language is implemented.

The Java virtual machine is an abstract machine. References to the Java virtual machine throughout this
specification refer to this abstract machine rather than to Sun's or any other specific implementation. This
book serves as documentation for a concrete implementation of the Java virtual machine only as a blueprint
documents a house. An implementation of the Java virtual machine (known as a runtime interpreter) must
embody this specification, but is constrained by it only where absolutely necessary.

The Java virtual machine specified here will support the Java programming language specified in The JavaTM

Language Specification (Addison-Wesley, 1996). It is compatible with the Java platform implemented by
Sun's JDK releases 1.0.2 and 1.1 and the JavaTM 2 platform implemented by Sun's JavaTM 2 SDK, Standard
Edition, v1.2 (formerly known as JDK release 1.2).

We intend that this specification should sufficiently document the Java virtual machine to make possible
compatible clean-room implementations. If you are considering constructing your own Java virtual machine
implementation, feel free to contact us to obtain assistance to ensure the 100% compatibility of your
implementation.

Send comments on this specification or questions about implementing the Java virtual machine to our
electronic mail address: jvm@java.sun.com. To learn the latest about the Java 2 platform, or to download
the latest Java 2 SDK release, visit our World Wide Web site at http://java.sun.com. For updated
information about the Java Series, including errata for The JavaTM Virtual Machine Specification, and
previews of forthcoming books, visit http://java.sun.com/Series.

The virtual machine that evolved into the Java virtual machine was originally designed by James Gosling in
1992 to support the Oak programming language. The evolution into its present form occurred through the
direct and indirect efforts of many people and spanned Sun's Green project, FirstPerson, Inc., the LiveOak
project, the Java Products Group, JavaSoft, and today, Sun's Java Software. The authors are grateful to the
many contributors and supporters.

This book began as internal project documentation. Kathy Walrath edited that early draft, helping to give the
world its first look at the internals of the Java programming language. It was then converted to HTML by
Mary Campione and was made available on our Web site before being expanded into book form.

The creation of The JavaTM Virtual Machine Specification owes much to the support of the Java Products
Group led by General Manager Ruth Hennigar, to the efforts of series editor Lisa Friendly, and to editor Mike
Hendrickson and his group at Addison-Wesley. The many criticisms and suggestions received from reviewers
of early online drafts, as well as drafts of the printed book, improved its quality immensely. We owe special
thanks to Richard Tuck for his careful review of the manuscript and to the authors of The JavaTM Language
Specification, Addison-Wesley, 1996, for allowing us to quote extensively from that book. Particular thanks
to Bill Joy whose comments, reviews, and guidance have contributed greatly to the completeness and
accuracy of this book.

 Preface

7

mailto:jvm@java.sun.com
http://java.sun.com
http://java.sun.com/Series


Notes on the Second Edition

The second edition of The JavaTM Virtual Machine Specification brings the specification of the Java virtual
machine up to date with the JavaTM 2 platform, v1.2. It also includes many corrections and clarifications that
update the presentation of the specification without changing the logical specification itself. We have
attempted to correct typos and errata (hopefully without introducing new ones) and to add more detail to the
specification where it was vague or ambiguous. In particular, we corrected a number of inconsistencies
between the first edition of The JavaTM Virtual Machine Specification and The JavaTM Language Specification.

We thank the many readers who combed through the first edition of this book and brought problems to our
attention. Several individuals and groups deserve special thanks for pointing out problems or contributing
directly to the new material:

Carla Schroer and her teams of compatibility testers in Cupertino, California, and Novosibirsk, Russia (with
special thanks to Leonid Arbouzov and Alexei Kaigorodov), painstakingly wrote compatibility tests for each
testable assertion in the first edition. In the process they uncovered many places where the original
specification was unclear or incomplete.

Jeroen Vermeulen, Janice Shepherd, Peter Bertelsen, Roly Perera, Joe Darcy, and Sandra Loosemore have all
contributed comments and feedback that have improved this edition.

Marilyn Rash and Hilary Selby Polk of Addison Wesley Longman helped us to improve the readability and
layout of this edition at the same time as we were incorporating all the technical changes.

Special thanks go to Gilad Bracha, who has brought a new level of rigor to the presentation and has been a
major contributor to much of the new material, especially chapters 4 and 5 and the new "Appendix: Summary
of Clarifications and Amendments." His dedication to "computational theology" and his commitment to
resolving inconsistencies between The JavaTM Virtual Machine Specification and The JavaTM Language
Specification have benefited this book tremendously.

 Tim Lindholm

Frank Yellin

Java Software, Sun Microsystems, Inc.

Notes on the HTML Version of the Second Edition

The second edition of The JavaTM Virtual Machine Specification was converted from its Adobe FrameMaker
source into HTML through the heroic efforts of Suzette Pelouch.
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Series Foreword
The Java Series books provide definitive reference documentation for Java programmers and end users. They
are written by members of the Java team and published under the auspices of JavaSoft, a Sun Microsystems
business. The World- Wide-Web allows Java documentation to be made available over the Internet, either by
downloading or as hypertext. Nevertheless, the world-wide interest in Java technology led us to write and
publish these books to supplement all of the documentation at our Web site

To learn the latest about the Java Platform and Environment or download the latest Java release, visit our
World Wide Web site at http://java.sun.com. For updated information about the Java Series,
including sample code, errata, and previews of forthcoming books, visit
http://java.sun.com/Series.

We would like to thank the Corporate and Professional Publishing Group at Addison-Wesley for their
partnership in putting together the Series. Our editor Mike Hendrickson and his team have done a superb job
of navigating us through the world of publishing. Within Sun Microsystems, the support of James Gosling,
Jon Kannegaard, and Bill Joy ensured that this series would have the resources it needed to be successful. In
addition to the tremendous effort by individual authors, many members of the JavaSoft team have contributed
behind the scenes to bring the highest level of quality and engineering to the books in the Series. A personal
note of thanks to my children Christopher and James for putting a positive spin on the many trips to my office
during the development of the Series.

Lisa Friendly
Series Editor
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CHAPTER 1

Introduction

1.1 A Bit of History

The Java programming language is a general-purpose object-oriented concurrent language. Its syntax is
similar to C and C++, but it omits many of the features that make C and C++ complex, confusing, and unsafe.
The Java platform was initially developed to address the problems of building software for networked
consumer devices. It was designed to support multiple host architectures and to allow secure delivery of
software components. To meet these requirements, compiled code had to survive transport across networks,
operate on any client, and assure the client that it was safe to run.

The popularization of the World Wide Web made these attributes much more interesting. The Internet
demonstrated how media-rich content could be made accessible in simple ways. Web browsers such as
Mosaic enabled millions of people to roam the Net and made Web surfing part of popular culture. At last there
was a medium where what you saw and heard was essentially the same whether you were using a Mac, PC, or
UNIX machine, and whether you were connected to a high-speed network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML document format was too
limited. HTML extensions, such as forms, only highlighted those limitations, while making it clear that no
browser could include all the features users wanted. Extensibility was the answer.

Sun's HotJava browser showcases the interesting properties of the Java programming language and platform
by making it possible to embed programs inside HTML pages. These programs are transparently downloaded
into the HotJava browser along with the HTML pages in which they appear. Before being accepted by the
browser, the programs are carefully checked to make sure they are safe. Like HTML pages, compiled
programs are network- and host-independent. The programs behave the same way regardless of where they
come from or what kind of machine they are being loaded into and run on.

A Web browser incorporating the Java or Java 2 platform is no longer limited to a predetermined set of
capabilities. Visitors to Web pages incorporating dynamic content can be assured that their machines cannot
be damaged by that content. Programmers can write a program once, and it will run on any machine supplying
a Java or Java 2 runtime environment.

1.2 The Java Virtual Machine

The Java virtual machine is the cornerstone of the Java and Java 2 platforms. It is the component of the
technology responsible for its hardware- and operating system- independence, the small size of its compiled
code, and its ability to protect users from malicious programs.

The Java virtual machine is an abstract computing machine. Like a real computing machine, it has an
instruction set and manipulates various memory areas at run time. It is reasonably common to implement a
programming language using a virtual machine; the best-known virtual machine may be the P-Code machine
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of UCSD Pascal.

The first prototype implementation of the Java virtual machine, done at Sun Microsystems, Inc., emulated the
Java virtual machine instruction set in software hosted by a handheld device that resembled a contemporary
Personal Digital Assistant (PDA). Sun's current Java virtual machine implementations, components of its
JavaTM 2 SDK and JavaTM 2 Runtime Environment products, emulate the Java virtual machine on Win32 and
Solaris hosts in much more sophisticated ways. However, the Java virtual machine does not assume any
particular implementation technology, host hardware, or host operating system. It is not inherently interpreted,
but can just as well be implemented by compiling its instruction set to that of a silicon CPU. It may also be
implemented in microcode or directly in silicon.

The Java virtual machine knows nothing of the Java programming language, only of a particular binary
format, the class file format. A class file contains Java virtual machine instructions (or bytecodes) and a
symbol table, as well as other ancillary information.

For the sake of security, the Java virtual machine imposes strong format and structural constraints on the code
in a class file. However, any language with functionality that can be expressed in terms of a valid class
file can be hosted by the Java virtual machine. Attracted by a generally available, machine-independent
platform, implementors of other languages are turning to the Java virtual machine as a delivery vehicle for
their languages.

1.3 Summary of Chapters

The rest of this book is structured as follows:

Chapter 2 gives an overview of Java programming language concepts and terminology necessary for
the rest of the book.

• 

Chapter 3 gives an overview of the Java virtual machine architecture.• 
Chapter 4 specifies the class file format, the hardware- and operating system-independent binary
format used to represent compiled classes and interfaces.

• 

Chapter 5 specifies the start-up of the Java virtual machine and the loading, linking, and initialization
of classes and interfaces.

• 

Chapter 6 specifies the instruction set of the Java virtual machine, presenting the instructions in
alphabetical order of opcode mnemonics.

• 

Chapter 7 introduces compilation of code written in the Java programming language into the
instruction set of the Java virtual machine.

• 

Chapter 8 describes Java virtual machine threads and their interaction with memory.• 
Chapter 9 gives a table of Java virtual machine opcode mnemonics indexed by opcode value.• 

1.4 Notation

Throughout this book we refer to classes and interfaces drawn from the Java and Java 2 platforms. Whenever
we refer to a class or interface using a single identifier N, the intended reference is to the class or interface
java.lang.N. We use the fully qualified name for classes from packages other than java.lang.

Whenever we refer to a class or interface that is declared in the package java or any of its subpackages, the
intended reference is to that class or interface as loaded by the bootstrap class loader (§5.3.1). Whenever we
refer to a subpackage of a package named java, the intended reference is to that subpackage as determined
by the bootstrap class loader.

The use of fonts in this book is as follows:
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A fixed width font is used for code examples written in the Java programming language, Java
virtual machine data types, exceptions, and errors.

• 

Italic is used for Java virtual machine "assembly language," its opcodes and operands, as well as
items in the Java virtual machine's runtime data areas. It is also used to introduce new terms and
simply for emphasis.

• 
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CHAPTER 2

Java Programming Language Concepts
The Java virtual machine was designed to support the Java programming language. Some concepts and
vocabulary from the Java programming language are thus useful when attempting to understand the virtual
machine. This chapter gives an overview intended to support the specification of the Java virtual machine, but
is not itself a part of that specification.

The content of this chapter has been condensed from the first edition of The JavaTM Language Specification,
by James Gosling, Bill Joy, and Guy Steele.1 Readers familiar with the Java programming language, but not
with The JavaTM Language Specification, should at least skim this chapter for the terminology it introduces.
Any discrepancies between this chapter and The JavaTM Language Specification should be resolved in favor of
The JavaTM Language Specification.

This chapter does not attempt to provide an introduction to the Java programming language. For such an
introduction, see The JavaTM Programming Language, Second Edition, by Ken Arnold and James Gosling.

2.1 Unicode

Programs written in the Java programming language supported by JDK release 1.1.7 and the Java 2 platform,
v1.2 use the Unicode character encoding, version 2.1, as specified in The Unicode Standard, Version 2.0,
ISBN 0-201-48345-9, and the update information for Version 2.1 of the Unicode Standard available at
http:// www.unicode.org. Programs written in the Java programming language used version 2.0.14
of the Unicode Standard in JDK releases 1.1 through 1.1.6 and used version 1.1.5 of the Unicode Standard in
JDK release 1.0.

Except for comments, identifiers (§2.2), and the contents of character and string literals (§2.3), all input
elements in a program written in the Java programming language are formed from only ASCII characters.
ASCII (ANSI X3.4) is the American Standard Code for Information Interchange. The first 128 characters of
the Unicode character encoding are the ASCII characters.

2.2 Identifiers

An identifier is an unlimited-length sequence of Unicode letters and digits, the first of which must be a letter.
Letters and digits may be drawn from the entire Unicode character set, which supports most writing scripts in
use in the world today. This allows programmers to use identifiers in their programs that are written in their
native languages.

The method (§2.10) Character.isJavaLetter returns true when passed a Unicode character that is
considered to be a letter in an identifier. The method Character.isJavaLetterOrDigit returns
true when passed a Unicode character that is considered to be a letter or digit in an identifier.
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Two identifiers are the same only if they have the same Unicode character for each letter or digit; identifiers
that have the same external appearance may still be different. An identifier must not be the same as a boolean
literal (§2.3), the null literal (§2.3), or a keyword in the Java programming language.

2.3 Literals

A literal is the source code representation of a value of a primitive type (§2.4.1), the String type (§2.4.8),
or the null type (§2.4). String literals and, more generally, strings that are the values of constant expressions
are "interned" so as to share unique instances, using the method String.intern.

The null type has one value, the null reference, denoted by the literal null. The boolean type has two
values, denoted by the literals true and false.

2.4 Types and Values

The Java programming language is strongly typed, which means that every variable and every expression has
a type that is known at compile time. Types limit the values that a variable (§2.5) can hold or that an
expression can produce, limit the operations supported on those values, and determine the meaning of those
operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories: primitive types (§2.4.1) and
reference types (§2.4.6). There is also a special null type, the type of the expression null, which has no
name. The null reference is the only possible value of an expression of null type and can always be converted
to any reference type. In practice, the programmer can ignore the null type and just pretend that null is a
special literal that can be of any reference type.

Corresponding to the primitive types and reference types, there are two categories of data values that can be
stored in variables, passed as arguments, returned by methods, and operated upon: primitive values (§2.4.1)
and reference values (§2.4.6).

2.4.1 Primitive Types and Values

A primitive type is a type that is predefined by the Java programming language and named by a reserved
keyword. Primitive values do not share state with other primitive values. A variable whose type is a primitive
type always holds a primitive value of that type.2

The primitive types are the boolean type and the numeric types. The numeric types are the integral types
and the floating-point types.

The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit, 32-bit, and 64-bit
signed two's-complement integers, respectively, and char, whose values are 16-bit unsigned integers
representing Unicode characters (§2.1).

The floating-point types are float and double, which are conceptually associated with the 32-bit
single-precision and 64-bit double-precision IEEE 754 values and operations as specified in IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The boolean type has the truth values true and false.
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2.4.2 Operators on Integral Values

The Java programming language provides a number of operators that act on integral values, including
numerical comparison, arithmetic operators, increment and decrement, bitwise logical and shift operators, and
numeric cast (§2.6.9).

Operands of certain unary and binary operators are subject to numeric promotion (§2.6.10).

The built-in integer operators do not indicate (positive or negative) overflow in any way; they wrap around on
overflow. The only integer operators that can throw an exception are the integer divide and integer remainder
operators, which can throw an ArithmeticException if the right-hand operand is zero.

Any value of any integral type may be cast to or from any numeric type. There are no casts between integral
types and the type boolean.

2.4.3 Floating-Point Types, Value Sets, and Values

The IEEE 754 standard includes not only positive and negative sign-magnitude numbers, but also positive
and negative zeros, positive and negative infinities, and a special Not-a-Number value (hereafter abbreviated
as "NaN"). The NaN value is used to represent the result of certain invalid operations such as dividing zero by
zero.

Every implementation of the Java programming language is required to support two standard sets of
floating-point values, called the float value set and the double value set. In addition, an implementation of the
Java programming language may support either or both of two extended-exponent floating-point value sets,
called the float-extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead of the standard value sets to
represent the values of expressions of type float or double.

The finite nonzero values of any floating-point value set can all be expressed in the form s · m·  2(e  -N  +  1),
where s is +1 or -1, m is a positive integer less than 2N, and e is an integer between Emin = - (2K  -  1-2) and
Emax = 2K  -  1-1, inclusive, and where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a value v in a value set might
be represented in this form using certain values for s, m, and e, then if it happened that m was even and e was
less than 2K  -1, one could halve m and increase e by 1 to produce a second representation for the same value v.
A representation in this form is called normalized if m  2N  -1; otherwise the representation is said to be
denormalized. If a value in a value set cannot be represented in such a way that m  2N  -1, then the value is
said to be a denormalized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin and Emax) for the two
required and two optional floating-point value sets are summarized in Table 2.1.

Parameter float float-extended-exponent double double-extended-exponent
N 24 24 53 53
K 8  11 11  15
Emax +127  +1023 +1023  +16383
Emin -126  -1022 -1022  -16382
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Where one or both extended-exponent value sets are supported by an implementation, then for each
supported extended-exponent value set there is a specific implementation-dependent constant K, whose value
is constrained by Table 2.1; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are ascribed to it above, but also
the five values positive zero, negative zero, positive infinity, negative infinity, and NaN.

Note that the constraints in Table 2.1 are designed so that every element of the float value set is necessarily
also an element of the float-extended-exponent value set, the double value set, and the
double-extended-exponent value set. Likewise, each element of the double value set is necessarily also an
element of the double-extended-exponent value set. Each extended-exponent value set has a larger range of
exponent values than the corresponding standard value set, but does not have more precision.

The elements of the float value set are exactly the values that can be represented using the single
floating-point format defined in the IEEE 754 standard, except that there is only one NaN value (IEEE 754
specifies 224 - 2 distinct NaN values). The elements of the double value set are exactly the values that can be
represented using the double floating-point format defined in the IEEE 754 standard, except that there is only
one NaN value (IEEE 754 specifies 253 - 2 distinct NaN values). Note, however, that the elements of the
float-extended-exponent and double-extended-exponent value sets defined here do not correspond to the
values that can be represented using IEEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value sets are not types. It is
always correct for an implementation of the Java programming language to use an element of the float value
set to represent a value of type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set instead. Similarly, it is always
correct for an implementation to use an element of the double value set to represent a value of type double;
however, it may be permissible in certain regions of code for an implementation to use an element of the
double-extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to largest, they are negative
infinity, negative finite nonzero values, positive and negative zero, positive finite nonzero values, and positive
infinity.

On comparison, positive zero and negative zero are equal; thus the result of the expression 0.0  ==  -0.0 is
true and the result of 0.0  >  -0.0 is false. But other operations can distinguish positive and negative zero; for
example, 1.0/0.0 has the value positive infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so the numerical comparison operators <, <=, >, and >= return false if either or both
operands are NaN. The equality operator == returns false if either operand is NaN, and the inequality operator
!= returns true if either operand is NaN. In particular, x  !=  x is true if and only if x is NaN, and (x<y) ==
!(x>=y) will be false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric type. There are no casts between
floating-point types and the type boolean.

2.4.4 Operators on Floating-Point Values

The Java programming language provides a number of operators that act on floating-point values, including
numerical comparison, arithmetic operators, increment and decrement, and numeric cast (§2.6.9).

If at least one of the operands to a binary operator is of floating-point type, then the operation is a
floating-point operation, even if the other operand is integral. Operands of certain unary and binary operators
are subject to numeric promotion (§2.6.10).
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The values returned by operators on floating-point numbers are those specified by IEEE 754. In particular,
the Java programming language requires support of IEEE 754 denormalized floating-point numbers and
gradual underflow, which make it easier to prove desirable properties of particular numerical algorithms.

The Java programming language requires that floating-point arithmetic behave as if every floating-point
operator rounded its floating-point result to the result precision. Inexact results must be rounded to the
representable value nearest to the infinitely precise result; if the two nearest representable values are equally
near, the one having zero as its least significant bit is chosen. This is the IEEE 754 standard's default rounding
mode known as round to nearest mode.

When converting a floating-point value to an integer, round towards zero mode is used (§2.6.3). Round
towards zero mode acts as though the number were truncated, discarding the significand bits. Round towards
zero mode chooses as its result the format's value closest to and no greater in magnitude than the infinitely
precise result.

The floating-point operators of the Java programming language produce no exceptions (§2.16). An operation
that overflows produces a signed infinity; an operation that underflows produces a denormalized value or a
signed zero; and an operation that has no mathematically definite result produces NaN. All numeric operations
(except for numeric comparison) with NaN as an operand produce NaN as a result.

Any value of any floating-point type may be cast (§2.6.9) to or from any numeric type. There are no casts
between floating-point types and the type boolean.

2.4.5 Operators on boolean Values

The boolean operators include relational operators and logical operators. Only boolean expressions can be
used in control flow statements and as the first operand of the conditional operator ?:. An integral value x
can be converted to a value of type boolean, following the C language convention that any nonzero value is
true, by the expression x!=0. An object reference obj can be converted to a value of type boolean,
following the C language convention that any reference other than null is true, by the expression
obj!=null.

There are no casts between the type boolean and any other type.

2.4.6 Reference Types, Objects, and Reference Values

There are three kinds of reference types: the class types (§2.8), the interface types (§2.13), and the array
types (§2.15). An object is a dynamically created class instance or an array. The reference values (often just
references) are pointers to these objects and a special null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression, or by invoking the
newInstance method of class Class. An array is explicitly created by an array creation expression. An
object is created in the heap and is garbage-collected after there are no more references to it. Objects cannot
be reclaimed or freed by explicit language directives.

There may be many references to the same object. Most objects have state, stored in the fields of objects that
are instances of classes or in the variables that are the components of an array object. If two variables contain
references to the same object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the other variable's reference.

Each object has an associated lock (§2.19, §8.13) that is used by synchronized methods and by the
synchronized statement to provide control over concurrent access to state by multiple threads (§2.19,
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§8.12).

Reference types form a hierarchy. Each class type is a subclass of another class type, except for the class
Object (§2.4.7), which is the superclass (§2.8.3) of all other class and array types. All objects, including
arrays, support the methods of class Object. String literals (§2.3) are references to instances of class
String (§2.4.8).

2.4.7 The Class Object

The standard class Object is the superclass (§2.8.3) of all other classes. A variable of type Object can
hold a reference to any object, whether it is an instance of a class or an array. All class and array types inherit
the methods of class Object.

2.4.8 The Class String

Instances of class String represent sequences of Unicode characters (§2.1). A String object has a
constant, unchanging value. String literals (§2.3) are references to instances of class String.

2.4.9 Operators on Objects

The operators on objects include field access, method invocation, cast, string concatenation, comparison for
equality, instanceof, and the conditional operator ?:.

2.5 Variables

A variable is a storage location. It has an associated type, sometimes called its compile-time type, that is
either a primitive type (§2.4.1) or a reference type (§2.4.6). A variable always contains a value that is
assignment compatible (§2.6.7) with its type. A variable of a primitive type always holds a value of that exact
primitive type. A variable of reference type can hold either a null reference or a reference to any object whose
class is assignment compatible (§2.6.7) with the type of the variable.

Compatibility of the value of a variable with its type is guaranteed by the design of the language because
default values (§2.5.1) are compatible and all assignments to a variable are checked, at compile time, for
assignment compatibility. There are seven kinds of variables:

A class variable is a field of a class type declared using the keyword static (§2.9.1) within a class
declaration, or with or without the keyword static in an interface declaration. Class variables are
created when the class or interface is loaded (§2.17.2) and are initialized on creation to default values
(§2.5.1). The class variable effectively ceases to exist when its class or interface is unloaded
(§2.17.8).

1. 

An instance variable is a field declared within a class declaration without using the keyword static
(§2.9.1). If a class T has a field a that is an instance variable, then a new instance variable a is created
and initialized to a default value (§2.5.1) as part of each newly created object of class T or of any
class that is a subclass of T. The instance variable effectively ceases to exist when the object of which
it is a field is no longer referenced, after any necessary finalization of the object (§2.17.7) has been
completed.

2. 
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Array components are unnamed variables that are created and initialized to default values (§2.5.1)
whenever a new object that is an array is created (§2.17.6). The array components effectively cease to
exist when the array is no longer referenced.

3. 

Method parameters name argument values passed to a method. For every parameter declared in a
method declaration, a new parameter variable is created each time that method is invoked. The new
variable is initialized with the corresponding argument value from the method invocation. The method
parameter effectively ceases to exist when the execution of the body of the method is complete.

4. 

Constructor parameters name argument values passed to a constructor. For every parameter declared
in a constructor declaration, a new parameter variable is created each time a class instance creation
expression or explicit constructor invocation is evaluated. The new variable is initialized with the
corresponding argument value from the creation expression or constructor invocation. The constructor
parameter effectively ceases to exist when the execution of the body of the constructor is complete.

5. 

An exception-handler parameter variable is created each time an exception is caught by a catch
clause of a try statement (§2.16.2). The new variable is initialized with the actual object associated
with the exception (§2.16.3). The exception-handler parameter effectively ceases to exist when
execution of the block associated with the catch clause (§2.16.2) is complete.

6. 

Local variables are declared by local variable declaration statements. Whenever the flow of control
enters a block or a for statement, a new variable is created for each local variable declared in a local
variable declaration statement immediately contained within that block or for statement. The local
variable is not initialized, however, until the local variable declaration statement that declares it is
executed. The local variable effectively ceases to exist when the execution of the block or for
statement is complete.

7. 

2.5.1 Initial Values of Variables

Every variable in a program must have a value before it is used:

Each class variable, instance variable, and array component is initialized with a default value when it
is created:

• 

For type byte, the default value is zero, that is, the value of (byte)0.• 
For type short, the default value is zero, that is, the value of (short)0.• 
For type int, the default value is zero, that is, 0.• 
For type long, the default value is zero, that is, 0L.• 
For type float, the default value is positive zero, that is, 0.0f.• 
For type double, the default value is positive zero, that is, 0.0.• 
For type char, the default value is the null character, that is, '\u0000'.• 
For type boolean, the default value is false.• 
For all reference types (§2.4.6), the default value is null (§2.3).• 
Each method parameter (§2.5) is initialized to the corresponding argument value provided by the
invoker of the method.

• 

Each constructor parameter (§2.5) is initialized to the corresponding argument value provided by an
object creation expression or explicit constructor invocation.

• 

An exception-handler parameter (§2.16.2) is initialized to the thrown object representing the
exception (§2.16.3).

• 

A local variable must be explicitly given a value, by either initialization or assignment, before it is
used.

• 
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2.5.2 Variables Have Types, Objects Have Classes

Every object belongs to some particular class. This is the class that was mentioned in the class instance
creation expression that produced the object, or the class whose class object was used to invoke the
newInstance method to produce the object. This class is called the class of the object. An object is said to
be an instance of its class and of all superclasses of its class. Sometimes the class of an object is called its
"runtime type," but "class" is the more accurate term.

(Sometimes a variable or expression is said to have a "runtime type," but that is an abuse of terminology; it
refers to the class of the object referred to by the value of the variable or expression at run time, assuming that
the value is not null. Properly speaking, type is a compile-time notion. A variable or expression has a type;
an object or array has no type, but belongs to a class.)

The type of a variable is always declared, and the type of an expression can be deduced at compile time. The
type limits the possible values that the variable can hold or the expression can produce at run time. If a
runtime value is a reference that is not null, it refers to an object or array that has a class (not a type), and
that class will necessarily be compatible with the compile-time type.

Even though a variable or expression may have a compile-time type that is an interface type, there are no
instances of interfaces (§2.13). A variable or expression whose type is an interface type can reference any
object whose class implements that interface.

Every array also has a class. The classes for arrays have strange names that are not valid identifiers; for
example, the class for an array of int components has the name "[I".

2.6 Conversions and Promotions

A conversion from type S to type T allows an expression of type S to be treated at compile time as if it were
of type T instead. In some cases this will require a corresponding action at run time to check the validity of the
conversion or to translate the runtime value of the expression into a form appropriate for the new type T.

Numeric promotions are conversions that change an operand of a numeric operation to a wider type, or both
operands of a numeric operation to a common type, so that an operation can be performed.

In the Java programming language, there are six broad kinds of conversions:

Identity conversions• 
Widening primitive conversions• 
Narrowing primitive conversions• 
Widening reference conversions• 
Narrowing reference conversions• 
String conversions• 

There are five conversion contexts in which conversion expressions can occur. Each context allows
conversions in some of the above-named categories but not others. The conversion contexts are:

Assignment conversion (§2.6.7), which converts the type of an expression to the type of a specified
variable. The conversions permitted for assignment are limited in such a way that assignment
conversion never causes an exception.

• 

Method invocation conversion (§2.6.8), which is applied to each argument in a method or constructor
invocation, and, except in one case, performs the same conversions that assignment conversion does.
Method invocation conversion never causes an exception.

• 
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Casting conversion (§2.6.9), which converts the type of an expression to a type explicitly specified by
a cast operator. It is more inclusive than assignment or method invocation conversion, allowing any
specific conversion other than a string conversion, but certain casts to a reference type may cause an
exception at run time.

• 

String conversion, which allows any type to be converted to type String (§2.4.8).• 
Numeric promotion, which brings the operands of a numeric operator to a common type so that an
operation can be performed.

• 

String conversion only applies to operands of the binary + and += operators when one of the arguments is a
String; it will not be covered further.

2.6.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.

2.6.2 Widening Primitive Conversions

The following conversions on primitive types are called the widening primitive conversions :

byte to short, int, long, float, or double• 
short to int, long, float, or double• 
char to int, long, float, or double• 
int to long, float, or double• 
long to float or double• 
float to double• 

Widening conversions do not lose information about the sign or order of magnitude of a numeric value.
Conversions widening from an integral type to another integral type do not lose any information at all; the
numeric value is preserved exactly. Conversions widening from float to double in strictfp
expressions (§2.18) also preserve the numeric value exactly; however, such conversions that are not
strictfp may lose information about the overall magnitude of the converted value.

Conversion of an int or a long value to float, or of a long value to double, may lose precision, that
is, the result may lose some of the least significant bits of the value; the resulting floating-point value is a
correctly rounded version of the integer value, using IEEE 754 round to nearest mode (§2.4.4).

According to this rule, a widening conversion of a signed integer value to an integral type simply
sign-extends the two's-complement representation of the integer value to fill the wider format. A widening
conversion of a value of type char to an integral type zero-extends the representation of the character value
to fill the wider format.

Despite the fact that loss of precision may occur, widening conversions among primitive types never result in
a runtime exception (§2.16).

2.6.3 Narrowing Primitive Conversions

The following conversions on primitive types are called narrowing primitive conversions :

byte to char• 
short to byte or char• 
char to byte or short• 
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int to byte, short, or char• 
long to byte, short, char, or int• 
float to byte, short, char, int, or long• 
double to byte, short, char, int, long, or float• 

Narrowing conversions may lose information about the sign or order of magnitude, or both, of a numeric
value (for example, narrowing an int value 32763 to type byte produces the value -5). Narrowing
conversions may also lose precision.

A narrowing conversion of a signed integer to an integral type simply discards all but the n lowest-order bits,
where n is the number of bits used to represent the type. This may cause the resulting value to have a different
sign from the input value.

A narrowing conversion of a character to an integral type likewise simply discards all but the n lowest bits,
where n is the number of bits used to represent the type. This may cause the resulting value to be a negative
number, even though characters represent 16-bit unsigned integer values.

In a narrowing conversion of a floating-point number to an integral type, if the floating-point number is NaN,
the result of the conversion is 0 of the appropriate type. If the floating-point number is too large to be
represented by the integral type or is positive infinity, the result is the largest representable value of the
integral type. If the floating-point number is too small to be represented or is negative infinity, the result is the
smallest representable value of the integral type. Otherwise, the result is the floating-point number rounded
towards zero to an integer value using IEEE 754 round towards zero mode (§2.4.4)

A narrowing conversion from double to float behaves in accordance with IEEE 754. The result is
correctly rounded using IEEE 754 round to nearest mode (§2.4.4). A value too small to be represented as a
float is converted to a positive or negative zero; a value too large to be represented as a float is
converted to a positive or negative infinity. A double NaN is always converted to a float NaN.

Despite the fact that overflow, underflow, or loss of precision may occur, narrowing conversions among
primitive types never result in a runtime exception.

2.6.4 Widening Reference Conversions

Widening reference conversions never require a special action at run time and therefore never throw an
exception at run time. Because they do not affect the Java virtual machine, they will not be considered further.

2.6.5 Narrowing Reference Conversions

The following permitted conversions are called the narrowing reference conversions:

From any class type S to any class type T, provided that S is a superclass of T. (An important special
case is that there is a narrowing conversion from the class type Object to any other class type.)

• 

From any class type S to any interface type K, provided that S is not final and does not implement
K. (An important special case is that there is a narrowing conversion from the class type Object to
any interface type.)

• 

From type Object to any array type.• 
From type Object to any interface type.• 
From any interface type J to any class type T that is not final.• 
From any interface type J to any class type T that is final, provided that T implements J.• 
From any interface type J to any interface type K, provided that J is not a subinterface of K and there
is no method name m such that J and K both declare a method named m with the same signature but

• 
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different return types.
From any array type SC[] to any array type TC[], provided that SC and TC are reference types and
there is a permitted narrowing conversion from SC to TC.

• 

Such conversions require a test at run time to find out whether the actual reference value is a legitimate value
of the new type. If it is not, the Java virtual machine throws a ClassCastException.

2.6.6 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one value set (§2.4.3) to another
without changing its type.

For each operation in an expression that is not FP-strict (§2.18), value set conversion allows an
implementation of the Java programming language to choose between two options:

If the value is an element of the float-extended-exponent value set, then the implementation may map
the value to the nearest element of the float value set. This conversion may result in overflow (in
which case the value is replaced by an infinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of the same sign).

• 

If the value is an element of the double-extended-exponent value set, then the implementation may
map the value to the nearest element of the double value set. This conversion may result in overflow
(in which case the value is replaced by an infinity of the same sign) or underflow (in which case the
value may lose precision because it is replaced by a denormalized number or zero of the same sign).

• 

Within an FP-strict expression, value set conversion does not provide any choices; every implementation
must behave in the same way:

If the value is of type float and is not an element of the float value set, then the implementation must
map the value to the nearest element of the float value set. This conversion may result in overflow or
underflow.

• 

If the value is of type double and is not an element of the double value set, then the implementation
must map the value to the nearest element of the double value set. This conversion may result in
overflow or underflow.

• 

Within an FP-strict expression, mapping values from the float-extended-exponent value set or
double-extended-exponent value set is necessary only when a method is called whose declaration is not
FP-strict and the implementation has chosen to represent the result of the method call as an element of an
extended-exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion always leaves unchanged any
value whose type is neither float nor double.

2.6.7 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned to a variable: the type of the
expression must be converted to the type of the variable. Assignment contexts allow the use of an identity
conversion (§2.6.1), a widening primitive conversion (§2.6.2), or a widening reference conversion (§2.6.4). In
addition, a narrowing primitive conversion (§2.6.3) may be used if all of the following conditions are
satisfied:

The expression is a constant expression of type int.• 
The type of the variable is byte, short, or char.• 
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The value of the expression is representable in the type of the variable.• 

If the type of the expression can be converted to the type of a variable by assignment conversion, we say the
expression (or its value) is assignable to the variable or, equivalently, that the type of the expression is
assignment compatible with the type of the variable.

If the type of the variable is float or double, then value set conversion (§2.6.6) is applied after the type
conversion:

If the value is of type float and is an element of the float-extended-exponent value set, then the
implementation must map the value to the nearest element of the float value set. This conversion may
result in overflow or underflow.

• 

If the value is of type double and is an element of the double-extended-exponent value set, then the
implementation must map the value to the nearest element of the double value set. This conversion
may result in overflow or underflow.

• 

An assignment conversion never causes an exception. A value of primitive type must not be assigned to a
variable of reference type. A value of reference type must not be assigned to a variable of primitive type. A
value of type boolean can be assigned only to a variable of type boolean. A value of the null type may be
assigned to a variable of any reference type.

Assignment of a value of compile-time reference type S (source) to a variable of compile-time reference type
T (target) is permitted:

If S is a class type:

If T is a class type, then S must be the same class as T, or S must be a subclass of T.♦ 
If T is an interface type, then S must implement interface T.♦ 

• 

If S is an interface type:

If T is a class type, then T must be Object.♦ 
If T is an interface type, then T must be the same interface as S, or T must be a superinterface
of S.

♦ 

• 

If S is an array type SC[], that is, an array of components of type SC:

If T is a class type, then T must be Object.♦ 
If T is an interface type, then T must be either Cloneable or java.io.Serializable.♦ 
If T is an array type TC[], that is, an array of components of type TC, then either

TC and SC must be the same primitive type, or◊ 
TC and SC are both reference types and type SC is assignable to TC.◊ 

♦ 

• 

2.6.8 Method Invocation Conversion

Method invocation conversion is applied to each argument value in a method or constructor invocation: the
type of the argument expression must be converted to the type of the corresponding parameter. Method
invocation contexts allow the use of an identity conversion (§2.6.1), a widening primitive conversion (§2.6.2),
or a widening reference conversion (§2.6.4). Method invocation conversions specifically do not include the
implicit narrowing of integer constants that is part of assignment conversion (§2.6.7).

If the type of an argument expression is either float or double, then value set conversion (§2.6.6) is applied
after the type conversion:
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If an argument value of type float is an element of the float-extended-exponent value set, then the
implementation must map the value to the nearest element of the float value set. This conversion may
result in overflow or underflow.

• 

If an argument value of type double is an element of the double-extended-exponent value set, then
the implementation must map the value to the nearest element of the double value set. This
conversion may result in overflow or underflow.

• 

2.6.9 Casting Conversion

Casting conversions are more powerful than assignment or method invocation conversions applied to the
operand of a cast operator: the type of the operand expression must be converted to the type explicitly named
by the cast operator. Casting contexts allow the use of an identity conversion (§2.6.1), a widening primitive
conversion (§2.6.2), a narrowing primitive conversion (§2.6.3), a widening reference conversion (§2.6.4), or a
narrowing reference conversion (§2.6.5). Thus, casting conversions are more inclusive than assignment or
method invocation conversions: a cast can do any permitted conversion other than a string conversion.

Value set conversion (§2.6.6) is applied after the type conversion.

Casting can convert a value of any numeric type to any other numeric type. A value of type boolean cannot
be cast to another type. A value of reference type cannot be cast to a value of primitive type.

Some casts can be proven incorrect at compile time and result in a compile-time error. Otherwise, either the
cast can be proven correct at compile time, or a runtime validity check is required. (See The JavaTM Language
Specification for details.) If the value at run time is a null reference, then the cast is allowed. If the check at
run time fails, a ClassCastException is thrown.

2.6.10 Numeric Promotion

Numeric promotion is applied to the operands of an arithmetic operator. Numeric promotion contexts allow
the use of an identity conversion (§2.6.1) or a widening primitive conversion (§2.6.2).

Numeric promotions are used to convert the operands of a numeric operator to a common type where an
operation can be performed. The two kinds of numeric promotion are unary numeric promotion and binary
numeric promotion. The analogous conversions in C are called "the usual unary conversions" and "the usual
binary conversions." Numeric promotion is not a general feature of the Java programming language, but rather
a property of specific built-in operators.

An operator that applies unary numeric promotion to a single operand of numeric type converts an operand of
type byte, short, or char to int by a widening primitive conversion, and otherwise leaves the operand
alone. Value set conversion (§2.6.6) is then applied. The operands of the shift operators are promoted
independently using unary numeric promotions.

When an operator applies binary numeric promotion to a pair of numeric operands, the following rules apply,
in order, using widening primitive conversion to convert operands as necessary:

If either operand is of type double, the other is converted to double.• 
Otherwise, if either operand is of type float, the other is converted to float.• 
Otherwise, if either operand is of type long, the other is converted to long.• 
Otherwise, both operands are converted to type int.• 

After type conversion, if any, value set conversion is applied to each operand.
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2.7 Names and Packages

Names are used to refer to entities declared in a program. A declared entity is a package, type, member (field
or method) of a type, parameter, or local variable. Programs are organized sets of packages.

2.7.1 Simple Names and Qualified Names

A simple name is a single identifier (§2.2). Qualified names (§2.7.4) provide access to members of packages
and reference types. A qualified name consists of a name, a "." token, and an identifier.

Not all identifiers are part of a name. Identifiers are also used in declarations, where the identifier determines
the name by which an entity will be known, in field access expressions and method invocation expressions,
and in statement labels and break and continue statements that refer to statement labels.

2.7.2 Packages

A package consists of a number of compilation units and has a hierarchical name. Packages are independently
developed, and each package has its own set of names, which helps to prevent name conflicts. Each Java
virtual machine implementation determines how packages, compilation units, and subpackages are created
and stored; which top-level package names are in scope in a particular compilation; and which packages are
accessible. Packages may be stored in a local file system, in a distributed file system, or in some form of
database.

A package name component or class name might contain a character that cannot legally appear in a host file
system's ordinary directory or file name: for instance, a Unicode character on a system that allows only ASCII
characters in file names.

A Java virtual machine implementation must support at least one unnamed package; it may support more than
one but is not required to do so. Which compilation units are in each unnamed package is determined by the
host system. Unnamed packages are provided principally for convenience when developing small or
temporary applications or when just beginning development.

An import declaration allows a type declared in another package to be known by a simple name rather than
by the fully qualified name (§2.7.5) of the type. An import declaration affects only the type declarations of a
single compilation unit. A compilation unit automatically imports each of the public type names declared in
the predefined package java.lang.

2.7.3 Members

Packages and reference types have members. The members of a package (§2.7.2) are subpackages and all the
class (§2.8) and interface (§2.13) types declared in all the compilation units of the package. The members of a
reference type are fields (§2.9), methods (§2.10), and nested classes and interfaces.

2.7.3.1 The Members of a Package

In general, the subpackages of a package are determined by the host system. However, the standard package
java always has the subpackages lang, util, io, and net. No two distinct members of the same package
may have the same simple name (§2.7.1), but members of different packages may have the same simple name.
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2.7.3.2 The Members of a Class Type

The members of a class type (§2.8) are fields (§2.9), methods (§2.10), and nested classes and interfaces.
These include members inherited from its direct superclass (§2.8.3), if it has one, members inherited from any
direct superinterfaces (§2.13.2), and any members declared in the body of the class. There is no restriction
against a field and a method of a class type having the same simple name.

A class type may have two or more methods with the same simple name if they have different numbers of
parameters or different parameter types in at least one parameter position. Such a method member name is
said to be overloaded. A class type may contain a declaration for a method with the same name and the same
signature as a method that would otherwise be inherited from a superclass or superinterface. In this case, the
method of the superclass or superinterface is not inherited. If the method not inherited is abstract, the new
declaration is said to implement the method; if it is not abstract, the new declaration is said to override it.

2.7.3.3 The Members of an Interface Type

The members of an interface type (§2.13) are fields, methods, and nested classes and interfaces. The
members of an interface are the members inherited from any direct superinterfaces (§2.13.2) and members
declared in the body of the interface.

2.7.3.4 The Members of an Array Type

The members of an array type (§2.15) are the members inherited from its superclass, the class Object
(§2.4.7), and the field length, which is a constant (final) field of every array.

2.7.4 Qualified Names and Access Control

Qualified names (§2.7.1) are a means of access to members of packages and reference types; related means of
access include field access expressions and method invocation expressions. All three are syntactically similar
in that a "." token appears, preceded by some indication of a package, type, or expression having a type and
followed by an identifier that names a member of the package or type. These are collectively known as
constructs for qualified access.

The Java programming language provides mechanisms for limiting qualified access, to prevent users of a
package or class from depending on unnecessary details of the implementation of that package or class.
Access control also applies to constructors.

Whether a package is accessible is determined by the host system.

A class or interface may be declared public, in which case it may be accessed, using a qualified name, by
any class or interface that can access the package in which it is declared. A class or interface that is not
declared public may be accessed from, and only from, anywhere in the package in which it is declared.

Every field or method of an interface must be public. Every member of a public interface is implicitly
public, whether or not the keyword public appears in its declaration. It follows that a member of an
interface is accessible if and only if the interface itself is accessible.

A field, method, or constructor of a class may be declared using at most one of the public, private, or
protected keywords. A public member may be accessed by any class or interface. A private member
may be accessed only from within the class that contains its declaration. A member that is not declared
public, protected, or private is said to have default access and may be accessed from, and only
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from, anywhere in the package in which it is declared.

A protected member of an object may be accessed only by code responsible for the implementation of
that object. To be precise, a protected member may be accessed from anywhere in the package in which it
is declared and, in addition, it may be accessed from within any declaration of a subclass of the class type that
contains its declaration, provided that certain restrictions are obeyed.

2.7.5 Fully Qualified Names

Every package, class, interface, array type, and primitive type has a fully qualified name. It follows that every
type except the null type has a fully qualified name.

The fully qualified name of a primitive type is the keyword for that primitive type, namely,
boolean, char, byte, short, int, long, float, or double.

• 

The fully qualified name of a named package that is not a subpackage of a named package is its
simple name.

• 

The fully qualified name of a named package that is a subpackage of another named package consists
of the fully qualified name of the containing package followed by "." followed by the simple
(member) name of the subpackage.

• 

The fully qualified name of a class or interface that is declared in an unnamed package is the simple
name of the class or interface.

• 

The fully qualified name of a class or interface that is declared in a named package consists of the
fully qualified name of the package followed by "." followed by the simple name of the class or
interface.

• 

The fully qualified name of an array type consists of the fully qualified name of the component type
of the array type followed by "[]".

• 

2.8 Classes

A class declaration specifies a new reference type and provides its implementation. Each class is
implemented as an extension or subclass of a single existing class. A class may also implement one or more
interfaces.

The body of a class declares members (fields and methods), static initializers, and constructors.

2.8.1 Class Names

If a class is declared in a named package with the fully qualified name P, then the class has the fully qualified
name P.Identifier. If the class is in an unnamed package, then the class has the fully qualified name Identifier.

Two classes are the same class (and therefore the same type) if they are loaded by the same class loader
(§2.17.2) and they have the same fully qualified name (§2.7.5).

2.8.2 Class Modifiers

A class declaration may include class modifiers. A class may be declared public, as discussed in §2.7.4.

An abstract class is a class that is incomplete, or considered incomplete. Only abstract classes may
have abstract methods (§2.10.3), that is, methods that are declared but not yet implemented.
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A class can be declared final if its definition is complete and no subclasses are desired or required.
Because a final class never has any subclasses, the methods of a final class cannot be overridden in a
subclass. A class cannot be both final and abstract, because the implementation of such a class could
never be completed.

A class can be declared strictfp to indicate that all expressions in the methods of the class are FP-strict
(§2.18), whether or not the methods themselves are declared FP-strict.

A class is declared public to make its type available to packages other than the one in which it is declared.
A public class is accessible from other packages, using either its fully qualified name or a shorter name
created by an import declaration (§2.7.2), whenever the host permits access to its package. If a class lacks
the public modifier, access to the class declaration is limited to the package in which it is declared.

2.8.3 Superclasses and Subclasses

The optional extends clause in a class declaration specifies the direct superclass of the current class, the
class from whose implementation the implementation of the current class is derived. A class is said to be a
direct subclass of the class it extends. Only the class Object (§2.4.7) has no direct superclass. If the
extends clause is omitted from a class declaration, then the superclass of the new class is Object.

The subclass relationship is the transitive closure of the direct subclass relationship. A class A is a subclass of
a class C if A is a direct subclass of C, or if there is a direct subclass B of C and class A is a subclass of B.
Class A is said to be a superclass of class C whenever C is a subclass of A.

2.8.4 The Class Members

The members of a class type include all of the following:

Members inherited from its direct superclass (§2.8.3), except in class Object, which has no direct
superclass.

• 

Members inherited from any direct superinterfaces (§2.13.2).• 
Members declared in the body of the class.• 

Members of a superclass that are declared private are not inherited by subclasses of that class. Members
of a class that are not declared private, protected, or public are not inherited by subclasses declared
in a package other than the one in which the class is declared. Constructors (§2.12) and static initializers
(§2.11) are not members and therefore are not inherited.

2.9 Fields

The variables of a class type are its fields. Class (static) variables exist once per class. Instance variables
exist once per instance of the class. Fields may include initializers and may be modified using various
modifier keywords.

If the class declares a field with a certain name, then the declaration of that field is said to hide any and all
accessible declarations of fields with the same name in the superclasses and superinterfaces of the class. A
class inherits from its direct superclass and direct superinterfaces all the fields of the superclass and
superinterfaces that are accessible to code in the class and are not hidden by a declaration in the class. A
hidden field can be accessed by using a qualified name (if it is static) or by using a field access expression
that contains a cast to a superclass type or the keyword super.
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A value stored in a field of type float is always an element of the float value set (§2.4.3); similarly, a value
stored in a field of type double is always an element of the double value set. It is not permitted for a field of
type float to contain an element of the float-extended-exponent value set that is not also an element of the
float value set, nor for a field of type double to contain an element of the double-extended-exponent value set
that is not also an element of the double value set.

2.9.1 Field Modifiers

Fields may be declared public, protected, or private, as discussed in §2.7.4.

If a field is declared static, there exists exactly one incarnation of the field, no matter how many instances
(possibly zero) of the class may eventually be created. A static field, sometimes called a class variable, is
incarnated when the class is initialized (§2.17.4).

A field that is not declared static is called an instance variable. Whenever a new instance of a class is
created, a new variable associated with that instance is created for every instance variable declared in that
class or in any of its superclasses.

A field can be declared final, in which case its declarator must include a variable initializer (§2.9.2). Both
class and instance variables (static and non-static fields) may be declared final. Once a final field
has been initialized, it always contains the same value. If a final field holds a reference to an object, then
the state of the object may be changed by operations on the object, but the field will always refer to the same
object.

Variables may be marked transient to indicate that they are not part of the persistent state of an object.
The transient attribute can be used by an implementation to support special system services. The JavaTM

Language Specification does not yet specify details of such services.

The Java programming language allows threads that access shared variables to keep private working copies
of the variables; this allows a more efficient implementation of multiple threads (§2.19). These working
copies need to be reconciled with the master copies in the shared main memory only at prescribed
synchronization points, namely, when objects are locked or unlocked (§2.19). As a rule, to make sure that
shared variables are consistently and reliably updated, a thread should ensure that it has exclusive access to
such variables by obtaining a lock that conventionally enforces mutual exclusion for those shared variables.

Alternatively, a field may be declared volatile, in which case a thread must reconcile its working copy of
the field with the master copy every time it accesses the variable. Moreover, operations on the master copies
of one or more volatile variables on behalf of a thread are performed by the main memory in exactly the order
that the thread requested. A final field cannot also be declared volatile.

2.9.2 Initialization of Fields

If a field declaration contains a variable initializer, then it has the semantics of an assignment to the declared
variable, and:

If the declaration is for a class variable (that is, a static field), then the variable initializer is
evaluated and the assignment performed exactly once, when the class is initialized (§2.17.4).

• 

If the declaration is for an instance variable (that is, a field that is not static), then the variable
initializer is evaluated and the assignment performed each time an instance of the class is created.

• 
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2.10 Methods

A method declares executable code that can be invoked, passing a fixed number of values as arguments.
Every method declaration belongs to some class. A class inherits from its direct superclass (§2.8.3) and any
direct superinterfaces (§2.13.2) all the accessible methods of the superclass and superinterfaces, with one
exception: if a name is declared as a method in the new class, then no method with the same signature
(§2.10.2) is inherited. Instead, the newly declared method is said to override any such method declaration. An
overriding method must not conflict with the definition that it overrides, for instance, by having a different
return type. Overridden methods of the superclass can be accessed using a method invocation expression
involving the super keyword.

2.10.1 Formal Parameters

The formal parameters of a method, if any, are specified by a list of comma-separated parameter specifiers.
Each parameter specifier consists of a type and an identifier that specifies the name of the parameter. When
the method is invoked, the values of the actual argument expressions initialize newly created parameter
variables (§2.5), each of the declared type, before execution of the body of the method.

A method parameter of type float always contains an element of the float value set (§2.4.3); similarly, a
method parameter of type double always contains an element of the double value set. It is not permitted for a
method parameter of type float to contain an element of the float-extended-exponent value set that is not also
an element of the float value set, nor for a method parameter of type double to contain an element of the
double-extended-exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is not FP-strict (§2.18),
evaluation of that actual argument expression is permitted to use values drawn from the appropriate
extended-exponent value sets. Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by method invocation conversion
(§2.6.8).

2.10.2 Method Signature

The signature of a method consists of the name of the method and the number and type of formal parameters
(§2.10.1) of the method. A class may not declare two methods with the same signature.

2.10.3 Method Modifiers

The access modifiers public, protected, and private are discussed in Section 2.7.4.

An abstract method declaration introduces the method as a member, providing its signature (§2.10.2),
return type, and throws clause (if any), but does not provide an implementation. The declaration of an
abstract method m must appear within an abstract class (call it A). Every subclass of A that is not
itself abstract must provide an implementation for m. A method declared abstract cannot also be
declared to be private, static, final, native, strictfp, or synchronized.

A method that is declared static is called a class method. A class method is always invoked without
reference to a particular object. A class method may refer to other fields and methods of the class by simple
name only if they are class methods and class (static) variables.
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A method that is not declared static is an instance method. An instance method is always invoked with
respect to an object, which becomes the current object to which the keywords this and super refer during
execution of the method body.

A method can be declared final to prevent subclasses from overriding or hiding it. A private method
and all methods declared in a final class (§2.8.2) are implicitly final, because it is impossible to override
them. If a method is final or implicitly final, a compiler or a runtime code generator can safely "inline"
the body of a final method, replacing an invocation of the method with the code in its body.

A synchronized method will acquire a monitor lock (§2.19) before it executes. For a class (static)
method, the lock associated with the class object for the method's class is used. For an instance method, the
lock associated with this (the object for which the method is invoked) is used. The same per-object lock is
used by the synchronized statement.

A method can be declared strictfp to indicate that all expressions in the method are FP-strict (§2.18).

A method can be declared native to indicate that it is implemented in platform-dependent code, typically
written in another programming language such as C, C++, or assembly language. A method may not be
declared to be both native and strictfp.

2.11 Static Initializers

Any static initializers declared in a class are executed when the class is initialized (§2.17.4) and, together
with any field initializers (§2.9.2) for class variables, may be used to initialize the class variables of the class
(§2.17.4).

The static initializers and class variable initializers are executed in textual order. They may not refer to class
variables declared in the class whose declarations appear textually after the use, even though these class
variables are in scope. This restriction is designed to catch, at compile time, most circular or otherwise
malformed initializations.

2.12 Constructors

A constructor is used in the creation of an object that is an instance of a class. The constructor declaration
looks like a method declaration that has no result type. Constructors are invoked by class instance creation
expressions (§2.17.6), by the conversions and concatenations caused by the string concatenation operator +,
and by explicit constructor invocations from other constructors; they are never invoked by method invocation
expressions.

Constructor declarations are not members. They are never inherited and therefore are not subject to hiding or
overriding.

If a constructor body does not begin with an explicit constructor invocation and the constructor being
declared is not part of the primordial class Object, then the constructor body is implicitly assumed by the
compiler to begin with a superclass constructor invocation "super();", an invocation of the constructor of
the direct superclass that takes no arguments.

If a class declares no constructors then a default constructor, which takes no arguments, is automatically
provided. If the class being declared is Object, then the default constructor has an empty body. Otherwise,
the default constructor takes no arguments and simply invokes the superclass constructor with no arguments.
If the class is declared public, then the default constructor is implicitly given the access modifier public.
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Otherwise, the default constructor has the default access implied by no access modifier (§2.7.4).

A class can be designed to prevent code outside the class declaration from creating instances of the class by
declaring at least one constructor, in order to prevent the creation of an implicit constructor, and declaring all
constructors to be private.

2.12.1 Constructor Modifiers

Access to constructors is governed by the access modifiers public, protected, and private (§2.7.4).

A constructor cannot be abstract, static, final, native, or synchronized. A constructor cannot
be declared to be strictfp. This difference in the definitions for method modifiers (§2.10.3) and
constructor modifiers is an intentional language design choice; it effectively ensures that a constructor is
FP-strict (§2.18) if and only if its class is FP-strict, so to speak.

2.13 Interfaces 

An interface is a reference type whose members are constants and abstract methods. This type has no
implementation, but otherwise unrelated classes can implement it by providing implementations for its
abstract methods. Programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to Object.

An interface may be declared to be a direct extension of one or more other interfaces, meaning that it
implicitly specifies all the abstract methods and constants of the interfaces it extends, except for any
constants that it may hide, and perhaps adds newly declared members of its own.

A class may be declared to directly implement one or more interfaces, meaning that any instance of the class
implements all the abstract methods specified by that interface. A class necessarily implements all the
interfaces that its direct superclasses and direct superinterfaces do. This (multiple) interface inheritance allows
objects to support (multiple) common behaviors without sharing any implementation.

A variable whose declared type is an interface type may have as its value a reference to an object that is an
instance of any class that is declared to implement the specified interface. It is not sufficient that the class
happens to implement all the abstract methods of the interface; the class or one of its superclasses must
actually be declared to implement the interface, or else the class is not considered to implement the interface.

2.13.1 Interface Modifiers

An interface declaration may be preceded by the interface modifiers public, strictfp, and abstract.
The access modifier public is discussed in (§2.7.4). Every interface is implicitly abstract. All members
of interfaces are implicitly public.

An interface cannot be final, because the implementation of such a class could never be completed.

2.13.2 Superinterfaces

If an extends clause is provided, then the interface being declared extends each of the other named
interfaces and therefore inherits the methods and constants of each of the other named interfaces. Any class
that implements the declared interface is also considered to implement all the interfaces that this interface
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extends and that are accessible to the class.

The implements clause in a class declaration lists the names of interfaces that are direct superinterfaces of
the class being declared. All interfaces in the current package are accessible. Interfaces in other packages are
accessible if the host system permits access to the package and the interface is declared public.

An interface type K is a superinterface of class type C if K is a direct superinterface of C  ; or if C has a
direct superinterface J that has K as a superinterface; or if K is a superinterface of the direct superclass of C. A
class is said to implement all its superinterfaces.

There is no analogue of the class Object for interfaces; that is, while every class is an extension of class
Object, there is no single interface of which all interfaces are extensions.

2.13.3 Interface Members

The members of an interface are those members inherited from direct superinterfaces and those members
declared in the interface. The interface inherits, from the interfaces it extends, all members of those interfaces,
except for fields with the same names as fields it declares. Interface members are either fields or methods.

2.13.3.1 Interface (Constant) Fields

Every field declaration in the body of an interface is implicitly static and final. Interfaces do not have
instance variables. Every field declaration in an interface is itself implicitly public. A constant declaration
in an interface must not include either of the modifiers transient or volatile.

Every field in the body of an interface must have an initialization expression, which need not be a constant
expression. The variable initializer is evaluated and the assignment performed exactly once, when the
interface is initialized (§2.17.4).

2.13.3.2 Interface (Abstract) Methods

Every method declaration in the body of an interface is implicitly abstract and implicitly public.

A method declared in the body of an interface must not be declared static, because static methods
cannot be abstract.

A method declared in the body of an interface must not be declared native, strictfp, or
synchronized, because those keywords describe implementation properties rather than interface
properties; however, a method declared in an interface may be implemented by a method that is declared
native, strictfp, or synchronized in a class that implements the interface. A method declared in the
body of an interface must not be declared final; however, one may be implemented by a method that is
declared final in a class that implements the interface.

2.13.4 Overriding, Inheritance, and Overloading in Interfaces

If the interface declares a method, then the declaration of that method is said to override any and all methods
with the same signature in the superinterfaces of the interface that would otherwise be accessible to code in
this interface.
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An interface inherits from its direct superinterfaces all methods of the superinterfaces that are not overridden
by a method declared in the interface.

If two methods of an interface (whether both are declared in the same interface, or both are inherited by an
interface, or one is declared and one is inherited) have the same name but different signatures, then the
method name is said to be overloaded.

2.14 Nested Classes and Interfaces

JDK release 1.1 added nested classes and interfaces to the Java programming language. Nested classes and
interfaces are sometimes referred to as inner classes and interfaces, which are one sort of nested classes and
interfaces. However, nested classes and interfaces also encompass nested top-level classes and interfaces,
which are not inner classes or interfaces.

A full specification of nested classes and interfaces will be published in the second edition of The JavaTM

Language Specification. Until then, interested persons should refer to the Inner Classes Specification, which
may be found at
http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/innerclasses.doc.html.

2.15 Arrays

Arrays are objects, are dynamically created, and may be assigned to variables of type Object (§2.4.7). All
methods on arrays are inherited from class Object except the clone method, which arrays override. All
arrays implement the interfaces Cloneable and java.io.Serializable.

An array object contains a number of variables. That number may be zero, in which case the array is said to
be empty. The variables contained in an array have no names; instead they are referenced by array access
expressions that use nonnegative integer index values. These variables are called the components of the array.
If an array has n components, we say n is the length of the array.

An array of zero components is not the same as the null reference (§2.4).

An array component of type float is always an element of the float value set (§2.4.3); similarly, a component
of type double is always an element of the double value set. A component of type float may not be an element
of the float-extended-exponent value set unless it is also an element of the float value set. A component of
type double may not be an element of the double-extended-exponent value set unless it is also an element of
the double value set.

2.15.1 Array Types

All the components of an array have the same type, called the component type of the array. If the component
type of an array is T, then the type of the array itself is written T[].

The component type of an array may itself be an array type. The components of such an array may contain
references to subarrays. If, starting from any array type, one considers its component type, and then (if that is
also an array type) the component type of that type, and so on, eventually one must reach a component type
that is not an array type; this is called the element type of the original array, and the components at this level
of the data structure are called the elements of the original array.
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There are three situations in which an element of an array can be an array: if the element type is of type
Object (§2.4.7), Cloneable, or java.io.Serializable, then some or all of the elements may be
arrays, because every array object can be assigned to a variable of one of those types.

In the Java programming language, unlike in C, an array of char is not a String (§2.4.7), and neither a
String nor an array of char is terminated by '\u0000' (the NUL-character). A String object is
immutable (its value never changes), while an array of char has mutable elements.

The element type of an array may be any type, whether primitive or reference. In particular, arrays with an
interface type as the component type are supported; the elements of such an array may have as their value a
null reference or instances of any class type that implements the interface. Arrays with an abstract class
type as the component type are supported; the elements of such an array may have as their value a null
reference or instances of any subclass of this abstract class that is not itself abstract.

2.15.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of array type does not create an
array object or allocate any space for array components. It creates only the variable itself, which can contain a
reference to an array.

Because an array's length is not part of its type, a single variable of array type may contain references to
arrays of different lengths. Once an array object is created, its length never changes. To make an array
variable refer to an array of different length, a reference to a different array must be assigned to the variable.

If an array variable v has type A[], where A is a reference type, then v can hold a reference to any array type
B[], provided B can be assigned to A (§2.6.7).

2.15.3 Array Creation

An array is created by an array creation expression or an array initializer.

2.15.4 Array Access

A component of an array is accessed using an array access expression. Arrays may be indexed by int
values; short, byte, or char values may also be used as they are subjected to unary numeric promotion
(§2.6.10) and become int values.

All arrays are 0-origin. An array with length n can be indexed by the integers 0 through n - 1. All array
accesses are checked at run time; an attempt to use an index that is less than zero or greater than or equal to
the length of the array causes an ArrayIndexOutOfBoundsException to be thrown.

2.16 Exceptions

When a program violates the semantic constraints of the Java programming language, the Java virtual
machine signals this error to the program as an exception. An example of such a violation is an attempt to
index outside the bounds of an array. The Java programming language specifies that an exception will be
thrown when semantic constraints are violated and will cause a nonlocal transfer of control from the point
where the exception occurred to a point that can be specified by the programmer. An exception is said to be
thrown from the point where it occurred and is said to be caught at the point to which control is transferred. A
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method invocation that completes because an exception causes transfer of control to a point outside the
method is said to complete abruptly.

Programs can also throw exceptions explicitly, using throw statements. This provides an alternative to the
old-fashioned style of handling error conditions by returning distinguished error values, such as the integer
value -1, where a negative value would not normally be expected.

Every exception is represented by an instance of the class Throwable or one of its subclasses; such an
object can be used to carry information from the point at which an exception occurs to the handler that catches
it. Handlers are established by catch clauses of try statements. During the process of throwing an
exception, the Java virtual machine abruptly completes, one by one, any expressions, statements, method and
constructor invocations, static initializers, and field initialization expressions that have begun but not
completed execution in the current thread. This process continues until a handler is found that indicates that it
handles the thrown exception by naming the class of the exception or a superclass of the class of the
exception. If no such handler is found, then the method uncaughtException is invoked for the
ThreadGroup that is the parent of the current thread.

In the Java programming language the exception mechanism is integrated with the synchronization model
(§2.19) so that locks are properly released as synchronized statements and so that invocations of
synchronized methods complete abruptly.

The specific exceptions covered in this section are that subset of the predefined exceptions that can be thrown
directly by the operation of the Java virtual machine. Additional exceptions can be thrown by class library or
user code; these exceptions are not covered here. See The JavaTM Language Specification for information on
all predefined exceptions.

2.16.1 The Causes of Exceptions

An exception is thrown for one of three reasons:

An abnormal execution condition was synchronously detected by the Java virtual machine. These
exceptions are not thrown at an arbitrary point in the program, but rather at a point where they are
specified as a possible result of an expression evaluation or statement execution, such as:

When an operation violates the normal semantics of the Java programming language, for
example indexing outside the bounds of an array.

♦ 

When an error occurs in loading or linking part of the program.♦ 
When some limit on a resource is exceeded, for example when too much memory is used.♦ 

1. 

A throw statement was executed.2. 

An asynchronous exception occurred because:

The stop method of class Thread or ThreadGroup was invoked, or♦ 
An internal error occurred in the virtual machine implementation.♦ 

3. 

Exceptions are represented by instances of the class Throwable and instances of its subclasses. These
classes are, collectively, the exception classes.

2.16.2 Handling an Exception

When an exception is thrown, control is transferred from the code that caused the exception to the nearest
dynamically enclosing catch clause of a try statement that handles the exception.
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A statement or expression is dynamically enclosed by a catch clause if it appears within the try block of
the try statement of which the catch clause is a part, or if the caller of the statement or expression is
dynamically enclosed by the catch clause.

The caller of a statement or expression depends on where it occurs:

If within a method, then the caller is the method invocation expression that was executed to cause the
method to be invoked.

• 

If within a constructor or the initializer for an instance variable, then the caller is the class instance
creation expression or the method invocation of newInstance that was executed to cause an object
to be created.

• 

If within a static initializer or an initializer for a static variable, then the caller is the expression
that used the class or interface so as to cause it to be initialized.

• 

Whether a particular catch clause handles an exception is determined by comparing the class of the object
that was thrown to the declared type of the parameter of the catch clause. The catch clause handles the
exception if the type of its parameter is the class of the exception or a superclass of the class of the exception.
Equivalently, a catch clause will catch any exception object that is an instanceof the declared parameter
type.

The control transfer that occurs when an exception is thrown causes abrupt completion of expressions and
statements until a catch clause is encountered that can handle the exception; execution then continues by
executing the block of that catch clause. The code that caused the exception is never resumed.

If no catch clause handling an exception can be found, then the current thread (the thread that encountered
the exception) is terminated, but only after all finally clauses have been executed and the method
uncaughtException has been invoked for the ThreadGroup that is the parent of the current thread.

In situations where it is desirable to ensure that one block of code is always executed after another, even if
that other block of code completes abruptly, a try statement with a finally clause may be used. If a try
or catch block in a try-finally or try-catch-finally statement completes abruptly, then the
finally clause is executed during propagation of the exception, even if no matching catch clause is
ultimately found. If a finally clause is executed because of abrupt completion of a try block and the
finally clause itself completes abruptly, then the reason for the abrupt completion of the try block is
discarded and the new reason for abrupt completion is propagated from there.

Most exceptions occur synchronously as a result of an action by the thread in which they occur and at a point
in the program that is specified to possibly result in such an exception. An asynchronous exception is, by
contrast, an exception that can potentially occur at any point in the execution of a program.

Asynchronous exceptions are rare. They occur only as a result of:

An invocation of the stop method of class Thread or ThreadGroup.• 
An internal error in the Java virtual machine implementation.• 

A stop method may be invoked by one thread to affect another thread or all the threads in a specified thread
group. It is asynchronous because it may occur at any point in the execution of the other thread or threads. An
internal error is considered asynchronous so that it may be handled using the same mechanism that handles
the stop method, as will now be described.

The Java programming language permits a small but bounded amount of execution to occur before an
asynchronous exception is thrown. This delay is permitted to allow optimized code to detect and throw these
exceptions at points where it is practical to handle them while obeying the semantics of the language.
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A simple implementation might poll for asynchronous exceptions at the point of each control transfer
instruction. Since a program has a finite size, this provides a bound on the total delay in detecting an
asynchronous exception. Since no asynchronous exception will occur between control transfers, the code
generator has some flexibility to reorder computation between control transfers for greater performance.

All exceptions in the Java programming language are precise: when the transfer of control takes place, all
effects of the statements executed and expressions evaluated before the point from which the exception is
thrown must appear to have taken place. No expressions, statements, or parts thereof that occur after the point
from which the exception is thrown may appear to have been evaluated. If optimized code has speculatively
executed some of the expressions or statements which follow the point at which the exception occurs, such
code must be prepared to hide this speculative execution from the user-visible state of the program.

2.16.3 The Exception Hierarchy

The possible exceptions in a program are organized in a hierarchy of classes, rooted at class Throwable, a
direct subclass of Object. The classes Exception and Error are direct subclasses of Throwable. The
class RuntimeException is a direct subclass of Exception.

Programs can use the preexisting exception classes in throw statements, or define additional exception
classes as subclasses of Throwable or of any of its subclasses, as appropriate. To take advantage of
compile-time checking for exception handlers, it is typical to define most new exception classes as checked
exception classes, specifically as subclasses of Exception that are not subclasses of
RuntimeException.

2.16.4 The Classes Exception and RuntimeException

The class Exception is the superclass of all the standard exceptions that ordinary programs may wish to
recover from.

The class RuntimeException is a subclass of class Exception. The subclasses of
RuntimeException are unchecked exception classes. The package java.lang defines the following
standard unchecked runtime exceptions:

ArithmeticException: An exceptional arithmetic situation has arisen, such as an integer
division or integer remainder operation with a zero divisor.

• 

ArrayStoreException: An attempt has been made to store into an array component a value
whose class is not assignment compatible with the component type of the array.

• 

ClassCastException: An attempt has been made to cast a reference to an object to an
inappropriate type.

• 

IllegalMonitorStateException: A thread has attempted to wait on or notify other threads
waiting on an object that it has not locked.

• 

IndexOutOfBoundsException: Either an index of some sort (such as to an array, a string, or a
vector) or a subrange, specified either by two index values or by an index and a length, was out of
range.

• 

NegativeArraySizeException: An attempt was made to create an array with a negative
length.

• 

NullPointerException: An attempt was made to use a null reference in a case where an object
reference was required.

• 

SecurityException: A security violation was detected.• 

The class Error and its standard subclasses are exceptions from which ordinary programs are not ordinarily
expected to recover. The class Error is a separate subclass of Throwable, distinct from Exception in
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the class hierarchy, in order to allow programs to use the idiom

       } catch (Exception e) {

to catch all exceptions from which recovery may be possible without catching errors from which recovery is
typically not possible. Package java.lang defines all the error classes described here.

The Java virtual machine throws an object that is an instance of a subclass of LinkageError when a
loading (§2.17.2), linking (§2.17.3), or initialization (§2.17.4) error occurs.

The loading process is described in (§2.17.2). The errors ClassFormatError,
ClassCircularityError, NoClassDefFoundError, and
UnsupportedClassVersionError are described there.

• 

The linking process is described in (§2.17.3). The linking errors NoSuchFieldError,
NoSuchMethodError, InstantiationError, and IllegalAccessError are described
there.

• 

The class verification process is described in (§2.17.3). The verification failure error VerifyError
is described there.

• 

The class initialization process is described in (§2.17.4). A virtual machine will throw the error
ExceptionInInitializerError if execution of a static initializer or of an initializer for a
static field (§2.11) results in an exception that is not an Error or a subclass of Error.

A LinkageError may also be thrown at run time:

• 

An AbstractMethodError is thrown at run time if an abstract method is invoked.• 
An UnsatisfiedLinkError is thrown at run time if the Java virtual machine cannot find an
appropriate definition of a method declared to be native.

• 

A Java virtual machine implementation throws an object that is an instance of a subclass of the class
VirtualMachineError when an internal error or resource limitation prevents it from implementing the
semantics of the Java programming language. This specification defines the following virtual machine errors:

InternalError: An internal error has occurred in the Java virtual machine implementation
because of a fault in the software implementing the virtual machine, a fault in the underlying host
system software, or a fault in the hardware. This error is delivered asynchronously when it is detected
and may occur at any point in a program.

• 

OutOfMemoryError: The Java virtual machine implementation has run out of either virtual or
physical memory, and the automatic storage manager was unable to reclaim enough memory to
satisfy an object creation request.

• 

StackOverflowError: The Java virtual machine implementation has run out of stack space for a
thread, typically because the thread is doing an unbounded number of recursive invocations as a result
of a fault in the executing program.

• 

UnknownError: An exception or error has occurred, but the Java virtual machine implementation is
unable to report the actual exception or error.

• 

2.17 Execution

This section specifies activities that occur during execution of a program. It is organized around the life cycle
of the Java virtual machine and of the classes, interfaces, and objects that form a program. It specifies the
detailed procedures used in starting up the virtual machine (§2.17.1), class and interface type loading
(§2.17.2), linking (§2.17.3), and initialization (§2.17.4). It then specifies the procedures for creation of new
class instances (§2.17.6). It concludes by describing the unloading of classes (§2.17.8) and the procedure
followed when a virtual machine exits (§2.17.9).
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2.17.1 Virtual Machine Start-up

The Java virtual machine starts execution by invoking the method main of some specified class and passing
it a single argument, which is an array of strings. This causes the specified class to be loaded (§2.17.2), linked
(§2.17.3) to other types that it uses, and initialized (§2.17.4). The method main must be declared public,
static, and void.

The manner in which the initial class is specified to the Java virtual machine is beyond the scope of this
specification, but it is typical, in host environments that use command lines, for the fully qualified name of the
class to be specified as a command-line argument and for subsequent command-line arguments to be used as
strings to be provided as the argument to the method main. For example, using Sun's Java 2 SDK for Solaris,
the command line

java Terminator Hasta la vista Baby!

will start a Java virtual machine by invoking the method main of class Terminator (a class in an
unnamed package) and passing it an array containing the four strings "Hasta", "la", "vista", and
"Baby!".

We now outline the steps the virtual machine may take to execute Terminator, as an example of the
loading, linking, and initialization processes that are described further in later sections.

The initial attempt to execute the method main of class Terminator discovers that the class
Terminator is not loaded-that is, the virtual machine does not currently contain a binary representation for
this class. The virtual machine then uses a ClassLoader (§2.17.2) to attempt to find such a binary
representation. If this process fails, an error is thrown. This loading process is described further in (§2.17.2).

After Terminator is loaded, it must be initialized before main can be invoked, and a type (class or
interface) must always be linked before it is initialized. Linking (§2.17.3) involves verification, preparation,
and (optionally) resolution.

Verification (§2.17.3) checks that the loaded representation of Terminator is well formed, with a proper
symbol table. Verification also checks that the code that implements Terminator obeys the semantic
requirements of the Java virtual machine. If a problem is detected during verification, an error is thrown.

Preparation (§2.17.3) involves allocation of static storage and any data structures that are used internally by
the virtual machine, such as method tables.

Resolution (§2.17.3) is the process of checking symbolic references from class Terminator to other
classes and interfaces, by loading the other classes and interfaces that are mentioned and checking that the
references are correct.

The resolution step is optional at the time of initial linkage. An implementation may resolve a symbolic
reference from a class or interface that is being linked very early, even to the point of resolving all symbolic
references from the classes and interfaces that are further referenced, recursively. (This resolution may result
in errors from further loading and linking steps.) This implementation choice represents one extreme and is
similar to the kind of static linkage that has been done for many years in simple implementations of the C
language.

An implementation may instead choose to resolve a symbolic reference only when it is actually used;
consistent use of this strategy for all symbolic references would represent the "laziest" form of resolution. In
this case, if Terminator had several symbolic references to another class, the references might be resolved
one at a time or perhaps not at all, if these references were never used during execution of the program.
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The only requirement regarding when resolution is performed is that any errors detected during resolution
must be thrown at a point in the program where some action is taken by the program that might, directly or
indirectly, require linkage to the class or interface involved in the error. In the "static" example
implementation choice described earlier, loading and linking errors could occur before the program is
executed if they involved a class or interface mentioned in the class Terminator or any of the further,
recursively referenced classes and interfaces. In a system that implemented the "laziest" resolution, these
errors would be thrown only when a symbolic reference was used.

In our running example, the virtual machine is still trying to execute the method main of class
Terminator. This is permitted only if the class has been initialized (§2.17.4).

Initialization consists of execution of any class variable initializers and static initializers of the class
Terminator, in textual order. But before Terminator can be initialized, its direct superclass must be
initialized, as well as the direct superclass of its direct superclass, and so on, recursively. In the simplest case,
Terminator has Object as its implicit direct superclass; if class Object has not yet been initialized,
then it must be initialized before Terminator is initialized.

If class Terminator has another class Super as its superclass, then Super must be initialized before
Terminator. This requires loading, verifying, and preparing Super, if this has not already been done, and,
depending on the implementation, may also involve resolving the symbolic references from Super and so on,
recursively.

Initialization may thus cause loading, linking, and initialization errors, including such errors involving other
types.

Finally, after completion of the initialization for class Terminator (during which other consequential
loading, linking, and initializing may have occurred), the method main of Terminator is invoked.

2.17.2 Loading

Loading refers to the process of finding the binary form of a class or interface type with a particular name,
perhaps by computing it on the fly, but more typically by retrieving a binary representation previously
computed from source code by a compiler and constructing, from that binary form, a Class object to
represent the class or interface. The binary format of a class or interface is normally the class file format
(see Chapter 4, "The class File Format").

The loading process is implemented by the class ClassLoader and its subclasses. Different subclasses of
ClassLoader may implement different loading policies. In particular, a class loader may cache binary
representations of classes and interfaces, prefetch them based on expected usage, or load a group of related
classes together. These activities may not be completely transparent to a running application if, for example, a
newly compiled version of a class is not found because an older version is cached by a class loader. It is the
responsibility of a class loader, however, to reflect loading errors only at points in the program where they
could have arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following subclasses of class
LinkageError will be thrown at any point in the program that (directly or indirectly) uses the type:

ClassFormatError: The binary data that purports to specify a requested compiled class or
interface is malformed.

• 

UnsupportedClassVersionError: A class or interface could not be loaded because it is
represented using an unsupported version of the class file format.3

• 

ClassCircularityError: A class or interface could not be loaded because it would be its own
superclass or superinterface (§2.13.2).

• 
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NoClassDefFoundError: No definition for a requested class or interface could be found by the
relevant class loader.

• 

2.17.3 Linking: Verification, Preparation, and Resolution

Linking is the process of taking a binary form of a class or interface type and combining it into the runtime
state of the Java virtual machine, so that it can be executed. A class or interface type is always loaded before it
is linked. Three different activities are involved in linking: verification, preparation, and resolution of
symbolic references.

The Java programming language allows an implementation flexibility as to when linking activities (and,
because of recursion, loading) take place, provided that the semantics of the language are respected, that a
class or interface is completely verified and prepared before it is initialized, and that errors detected during
linkage are thrown at a point in the program where some action is taken by the program that might require
linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference in a class or interface
individually, only when it is used (lazy or late resolution), or to resolve them all at once, for example, while
the class is being verified (static resolution). This means that the resolution process may continue, in some
implementations, after a class or interface has been initialized.

Verification ensures that the binary representation of a class or interface is structurally correct. For example,
it checks that every instruction has a valid operation code; that every branch instruction branches to the start
of some other instruction, rather than into the middle of an instruction; that every method is provided with a
structurally correct signature; and that every instruction obeys the type discipline of the Java programming
language.

If an error occurs during verification, then an instance of the following subclass of class LinkageError
will be thrown at the point in the program that caused the class to be verified:

VerifyError: The binary definition for a class or interface failed to pass a set of required checks
to verify that it cannot violate the integrity of the Java virtual machine.

• 

Preparation involves creating the static fields for a class or interface and initializing such fields to the
standard default values (§2.5.1). This does not require the execution of any Java virtual machine code; explicit
initializers for static fields are executed as part of initialization (§2.17.4), not preparation.

Implementations of the Java virtual machine may precompute additional data structures at preparation time in
order to make later operations on a class or interface more efficient. One particularly useful data structure is a
"method table" or other data structure that allows any method to be invoked on instances of a class without
requiring a search of superclasses at invocation time.

The binary representation of a class or interface references other classes and interfaces and their fields,
methods, and constructors symbolically, using the fully qualified names (§2.7.5) of the other classes and
interfaces. For fields and methods these symbolic references include the name of the class or interface type
that declares the field or method, as well as the name of the field or method itself, together with appropriate
type information.

Before a symbolic reference can be used it must undergo resolution, wherein a symbolic reference is
validated and, typically, replaced with a direct reference that can be more efficiently processed if the reference
is used repeatedly.
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If an error occurs during resolution, then an instance of one of the following subclasses of class
IncompatibleClassChangeError, or of some other subclass, or of
IncompatibleClassChangeError  itself (which is a subclass of the class LinkageError)  may be
thrown at any point in the program that uses a symbolic reference to the type:

IllegalAccessError: A symbolic reference has been encountered that specifies a use or
assignment of a field, or invocation of a method, or creation of an instance of a class to which the
code containing the reference does not have access because the field or method was declared
private, protected, or default access (not public), or because the class was not declared
public. This can occur, for example, if a field that is originally declared public is changed to be
private after another class that refers to the field has been compiled.

• 

InstantiationError: A symbolic reference has been encountered that is used in a class instance
creation expression, but an instance cannot be created because the reference turns out to refer to an
interface or to an abstract class. This can occur, for example, if a class that is originally not
abstract is changed to be abstract after another class that refers to the class in question has
been compiled.

• 

NoSuchFieldError: A symbolic reference has been encountered that refers to a specific field of a
specific class or interface, but the class or interface does not declare a field of that name. This can
occur, for example, if a field declaration was deleted from a class after another class that refers to the
field was compiled.

• 

NoSuchMethodError: A symbolic reference has been encountered that refers to a specific method
of a specific class or interface, but the class or interface does not declare a method of that name and
signature. This can occur, for example, if a method declaration was deleted from a class after another
class that refers to the method was compiled.

• 

2.17.4 Initialization

Initialization of a class consists of executing its static initializers (§2.11) and the initializers for static fields
(§2.9.2) declared in the class. Initialization of an interface consists of executing the initializers for fields
declared in the interface (§2.13.3.1).

Before a class or interface is initialized, its direct superclass must be initialized, but interfaces implemented
by the class need not be initialized. Similarly, the superinterfaces of an interface need not be initialized before
the interface is initialized.

A class or interface type T will be initialized immediately before one of the following occurs:

T is a class and an instance of T is created.• 
T is a class and a static method of T is invoked.• 
A nonconstant static field of T is used or assigned. A constant field is one that is (explicitly or
implicitly) both final and static, and that is initialized with the value of a compile-time constant
expression. A reference to such a field must be resolved at compile time to a copy of the compile-time
constant value, so uses of such a field never cause initialization.

• 

Invocation of certain methods in library classes (§3.12) also causes class or interface initialization. See the
Java 2 platform's class library specifications (for example, class Class and package
java.lang.reflect) for details.

The intent here is that a type have a set of initializers that put it in a consistent state and that this state be the
first state that is observed by other classes. The static initializers and class variable initializers are executed in
textual order and may not refer to class variables declared in the class whose declarations appear textually
after the use, even though these class variables are in scope. This restriction is designed to detect, at compile
time, most circular or otherwise malformed initializations.
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Before a class or interface is initialized its superclass is initialized, if it has not previously been initialized.

2.17.5 Detailed Initialization Procedure

Initialization of a class or interface requires careful synchronization, since some other thread may be trying to
initialize the same class or interface at the same time. There is also the possibility that initialization of a class
or interface may be requested recursively as part of the initialization of that class or interface; for example, a
variable initializer in class A might invoke a method of an unrelated class B, which might in turn invoke a
method of class A. The implementation of the Java virtual machine is responsible for taking care of
synchronization and recursive initialization by using the following procedure. It assumes that the Class
object has already been verified and prepared and that the Class object contains state that can indicate one of
four situations:

This Class object is verified and prepared but not initialized.• 
This Class object is being initialized by some particular thread T.• 
This Class object is fully initialized and ready for use.• 
This Class object is in an erroneous state, perhaps because the verification step failed or because
initialization was attempted and failed.

• 

The procedure for initializing a class or interface is then as follows:

Synchronize on the Class object that represents the class or interface to be initialized. This involves
waiting until the current thread can obtain the lock for that object (§8.13).

1. 

If initialization by some other thread is in progress for the class or interface, then wait on this
Class object (which temporarily releases the lock). When the current thread awakens from the
wait, repeat this step.

2. 

If initialization is in progress for the class or interface by the current thread, then this must be a
recursive request for initialization. Release the lock on the Class object and complete normally.

3. 

If the class or interface has already been initialized, then no further action is required. Release the
lock on the Class object and complete normally.

4. 

If the Class object is in an erroneous state, then initialization is not possible. Release the lock on the
Class object and throw a NoClassDefFoundError.

5. 

Otherwise, record the fact that initialization of the Class object is now in progress by the current
thread and release the lock on the Class object.

6. 

Next, if the Class object represents a class rather than an interface, and the direct superclass of this
class has not yet been initialized, then recursively perform this entire procedure for the uninitialized
superclass. If the initialization of the direct superclass completes abruptly because of a thrown
exception, then lock this Class object, label it erroneous, notify all waiting threads, release the lock,
and complete abruptly, throwing the same exception that resulted from the initializing the superclass.

7. 

Next, execute either the class variable initializers and static initializers of the class or the field
initializers of the interface, in textual order, as though they were a single block, except that final
static variables and fields of interfaces whose values are compile-time constants are initialized
first.

8. 

If the execution of the initializers completes normally, then lock this Class object,  label it fully
initialized, notify all waiting threads, release the lock, and complete this procedure normally.

9. 
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Otherwise, the initializers must have completed abruptly by throwing some exception  E. If the class
of E is not Error or one of its subclasses, then create a new instance of the class
ExceptionInInitializerError, with E as the argument, and use this object in place of E in
the following step. But if a new instance of ExceptionInInitializerError cannot be created
because an OutOfMemoryError occurs, then instead use an OutOfMemoryError object in
place of E in the following step.

10. 

Lock the Class object, label it erroneous, notify all waiting threads, release the lock, and complete
this procedure abruptly with reason E or its replacement as determined in the previous step.

11. 

In some early implementations of the Java virtual machine, an exception during class initialization was
ignored rather than allowing it to cause an ExceptionInInitializerError as described here.

2.17.6 Creation of New Class Instances

A new class instance is explicitly created when one of the following situations occurs:

Evaluation of a class instance creation expression creates a new instance of the class whose name
appears in the expression.

• 

Invocation of the newInstance method of class Class creates a new instance of the class
represented by the Class object for which the method was invoked.

• 

A new class instance may be implicitly created in the following situations:

Loading of a class or interface that contains a String literal may create a new String object
(§2.4.8) to represent that literal. This may not occur if the a String object has already been created
to represent a previous occurrence of that literal, or if the String.intern method has been
invoked on a String object representing the same string as the literal.

• 

Execution of a string concatenation operator that is not part of a constant expression sometimes
creates a new String object to represent the result. String concatenation operators may also create
temporary wrapper objects for a value of a primitive type (§2.4.1).

• 

Each of these situations identifies a particular constructor to be called with specified arguments (possibly
none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it with room for all the instance
variables declared in the class type and all the instance variables declared in each superclass of the class type,
including all the instance variables that may be hidden. If there is not sufficient space available to allocate
memory for the object, then creation of the class instance completes abruptly with an OutOfMemoryError.
Otherwise, all the instance variables in the new object, including those declared in superclasses, are initialized
to their default values (§2.5.1).

Just before a reference to the newly created object is returned as the result, the indicated constructor is
processed to initialize the new object using the following procedure:

Assign the arguments for the constructor to newly created parameter variables for this constructor
invocation.

1. 

If this constructor begins with an explicit constructor invocation of another constructor in the same
class (using this), then evaluate the arguments and process that constructor invocation recursively
using these same five steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason. Otherwise, continue with step 5.

2. 
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If this constructor does not begin with an explicit constructor invocation of another constructor in the
same class (using this) and is in a class other than Object, then this constructor will begin with an
explicit or implicit invocation of a superclass constructor (using super). Evaluate the arguments and
process that superclass constructor invocation recursively using these same five steps. If that
constructor invocation completes abruptly, then this procedure completes abruptly for the same
reason. Otherwise, continue with step 4.

3. 

Execute the instance variable initializers for this class, assigning their values to the corresponding
instance variables, in the left-to-right order in which they appear textually in the source code for the
class. If execution of any of these initializers results in an exception, then no further initializers are
processed and this procedure completes abruptly with that same exception. Otherwise, continue with
step 5. (In some early implementations, the compiler incorrectly omitted the code to initialize a field if
the field initializer expression was a constant expression whose value was equal to the default
initialization value for its type. This was a bug.)

4. 

Execute the rest of the body of this constructor. If that execution completes abruptly, then this
procedure completes abruptly for the same reason. Otherwise, this procedure completes normally.

5. 

Unlike C++, the Java programming language does not specify altered rules for method dispatch during the
creation of a new class instance. If methods are invoked that are overridden in subclasses in the object being
initialized, then these overriding methods are used, even before the new object is completely created.

2.17.7 Finalization of Class Instances

The class Object has a protected method called finalize; this method can be overridden by other
classes. The particular definition of finalize that can be invoked for an object is called the finalizer of that
object. Before the storage for an object is reclaimed by the garbage collector, the Java virtual machine will
invoke the finalizer of that object.

Finalizers provide a chance to free up resources (such as file descriptors or operating system graphics
contexts) that cannot be freed automatically by an automatic storage manager. In such situations, simply
reclaiming the memory used by an object would not guarantee that the resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer will be invoked, except to say that it
will happen before the storage for the object is reused. Nor does the language specify which thread will
invoke the finalizer for any given object. If an uncaught exception is thrown during the finalization, the
exception is ignored and finalization of that object terminates.

The finalize method declared in class Object takes no action. However, the fact that class Object
declares a finalize method means that the finalize method for any class can always invoke the
finalize method for its superclass, which is usually good practice. (Unlike constructors, finalizers do not
automatically invoke the finalizer for the superclass; such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not override the finalize method of
class Object or that override it in a trivial way, such as

    protected void finalize() { super.finalize(); }

We encourage implementations to treat such objects as having a finalizer that is not overridden and to finalize
them more efficiently.

The finalize method may be invoked explicitly, just like any other method. However, doing so does not
have any effect on the object's eventual automatic finalization.
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The Java virtual machine imposes no ordering on finalize method calls. Finalizers may be called in any
order or even concurrently.

As an example, if a circularly linked group of unfinalized objects becomes unreachable, then all the objects
may become finalizable together. Eventually, the finalizers for these objects may be invoked in any order or
even concurrently using multiple threads. If the automatic storage manager later finds that the objects are
unreachable, then their storage can be reclaimed.

2.17.8 Unloading of Classes and Interfaces

A class or interface may be unloaded if and only if its class loader is unreachable. The bootstrap class loader
is always reachable; as a result, system classes may never be unloaded.

2.17.9 Virtual Machine Exit

The Java virtual machine terminates all its activity and exits when one of two things happens:

All the threads that are not daemon threads (§2.19) terminate.• 
Some thread invokes the exit method of class Runtime or class System, and the exit operation is
permitted by the security manager.

• 

A program can specify that all finalizers that have not been automatically invoked are to be run before the
virtual machine exits. This is done by invoking the method runFinalizersOnExit of the class System
with the argument true.4 By default finalizers are not run on exit. Once running finalizers on exit has been
enabled it may be disabled by invoking runFinalizersOnExit with the argument false. An
invocation of the runFinalizersOnExit method is permitted only if the caller is allowed to exit and is
otherwise rejected by the security manager.

2.18 FP-strict Expressions

If the type of an expression is float or double, then there is a question as to what value set (§2.4.3) the value
of the expression may be drawn from. This is governed by the rules of value set conversion (§2.6.6); these
rules in turn depend on whether or not the expression is FP-strict.

Every compile-time constant expression is FP-strict. If an expression is not a compile-time constant
expression, then consider all the class declarations, interface declarations, and method declarations that
contain the expression. If any such declaration bears the strictfp modifier, then the expression is FP-strict.

It follows that an expression is not FP-strict if and only if it is not a compile-time constant expression and it
does not appear within any declaration that has the strictfp modifier.

Within an FP-strict expression, all intermediate values must be elements of the float value set or the double
value set, implying that the results of all FP-strict expressions must be those predicted by IEEE 754 arithmetic
on operands represented using single and double formats. Within an expression that is not FP-strict, some
leeway is granted for an implementation to use an extended exponent range to represent intermediate results;
the net effect, roughly speaking, is that a calculation might produce "the correct answer" in situations where
exclusive use of the float value set or double value set might result in overflow or underflow.
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2.19 Threads

While most of the preceding discussion is concerned only with the behavior of code as executed by a single
thread, the Java virtual machine can support many threads of execution at once. These threads independently
execute code that operates on values and objects residing in a shared main memory. Threads may be
supported by having many hardware processors, by time-slicing a single hardware processor, or by
time-slicing many hardware processors.

Any thread may be marked as a daemon thread. When code running in some thread creates a new Thread
object, that new thread is initially marked as a daemon thread if and only if the creating thread is a daemon
thread. A program can change whether or not a particular thread is a daemon thread by calling the
setDaemon method in class Thread. The Java virtual machine initially starts up with a single nondaemon
thread, which typically calls the method main of some class. The virtual machine may also create other
daemon threads for internal purposes. The Java virtual machine exits when all nondaemon threads have
terminated (§2.17.9).

By providing mechanisms for synchronizing the concurrent activity of threads, the Java programming
language supports the coding of programs that, though concurrent, still exhibit deterministic behavior. To
synchronize threads the language uses monitors, a mechanism for allowing one thread at a time to execute a
region of code. The behavior of monitors is explained in terms of locks. There is a lock associated with each
object.

The synchronized statement performs two special actions relevant only to multithreaded operation:

After computing a reference to an object but before executing its body, it locks a lock associated with
the object.

1. 

After execution of the body has completed, either normally or abruptly, it unlocks that same lock. As
a convenience, a method may be declared synchronized; such a method behaves as if its body
were contained in a synchronized statement.

2. 

The methods wait, notify, and notifyAll of class Object support an efficient transfer of control
from one thread to another. Rather than simply "spinning" (repeatedly locking and unlocking an object to see
whether some internal state has changed), which consumes computational effort, a thread can suspend itself
using wait until such time as another thread awakens it using notify or notifyAll. This is especially
appropriate in situations where threads have a producer-consumer relationship (actively cooperating on a
common goal) rather than a mutual exclusion relationship (trying to avoid conflicts while sharing a common
resource).

As a thread executes code, it carries out a sequence of actions. A thread may use the value of a variable or
assign it a new value. (Other actions include arithmetic operations, conditional tests, and method invocations,
but these do not involve variables directly.) If two or more concurrent threads act on a shared variable, there is
a possibility that the actions on the variable will produce timing-dependent results. This dependence on timing
is inherent in concurrent programming and produces one of the few situations where the result of a program is
not determined solely by The JavaTM Language Specification.

Each thread has a working memory, in which it may keep copies of the values of variables from the main
memory that are shared between all threads. To access a shared variable, a thread usually first obtains a lock
and flushes its working memory. This guarantees that shared values will thereafter be loaded from the shared
main memory to the working memory of the thread. By unlocking a lock, a thread guarantees that the values
held by the thread in its working memory will be written back to the main memory.

The interaction of threads with the main memory, and thus with each other, may be explained in terms of
certain low-level actions. There are rules about the order in which these actions may occur. These rules
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impose constraints on any implementation of the Java programming language. A programmer may rely on the
rules to predict the possible behaviors of a concurrent program. The rules do, however, intentionally give the
implementor certain freedoms. The intent is to permit certain standard hardware and software techniques that
can greatly improve the speed and efficiency of concurrent code.

Briefly put, the important consequences of the rules are the following:

Proper use of synchronization constructs will allow reliable transmission of values or sets of values
from one thread to another through shared variables.

• 

When a thread uses the value of a variable, the value it obtains is in fact a value stored into the
variable by that thread or by some other thread. This is true even if the program does not contain code
for proper synchronization. For example, if two threads store references to different objects into the
same reference value, the variable will subsequently contain a reference to one object or the other, not
a reference to some other object or a corrupted reference value. (There is a special exception for
long and double values; see §8.4.)

• 

In the absence of explicit synchronization, an implementation is free to update the main memory in an
order that may be surprising. Therefore, the programmer who prefers to avoid surprises should use
explicit synchronization.

• 

The details of the interaction of threads with the main memory, and thus with each other, are discussed in
detail in Chapter 8, "Threads and Locks."

1 Including updates for JDK release 1.1 and the Java 2 platform, v1.2, published at
http://java.sun.com.

2 Note that a local variable is not initialized on its creation and is considered to hold a value only once it is
assigned (§2.5.1).

3 UnsupportedClassVersionError, a subclass of ClassFormatError, was introduced in the Java
2 platform, v1.2, to enable easy identification of a ClassFormatError caused by an attempt to load a
class represented using an unsupported version of the class file format.

4 The method runFinalizersOnExit was first implemented in JDK release 1.1 but has been deprecated
in the Java 2 platform, v1.2.
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CHAPTER 3

The Structure of the Java Virtual Machine
This book specifies an abstract machine. It does not document any particular implementation of the Java
virtual machine, including Sun Microsystems'.

To implement the Java virtual machine correctly, you need only be able to read the class file format and
correctly perform the operations specified therein. Implementation details that are not part of the Java virtual
machine's specification would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and any internal optimization of
the Java virtual machine instructions (for example, translating them into machine code) are left to the
discretion of the implementor.

3.1 The class File Format

Compiled code to be executed by the Java virtual machine is represented using a hardware- and operating
system-independent binary format, typically (but not necessarily) stored in a file, known as the class file
format. The class file format precisely defines the representation of a class or interface, including details
such as byte ordering that might be taken for granted in a platform-specific object file format.

Chapter 4, "The class File Format", covers the class file format in detail.

3.2 Data Types

Like the Java programming language, the Java virtual machine operates on two kinds of types: primitive types
and reference types. There are, correspondingly, two kinds of values that can be stored in variables, passed as
arguments, returned by methods, and operated upon: primitive values and reference values.

The Java virtual machine expects that nearly all type checking is done prior to run time, typically by a
compiler, and does not have to be done by the Java virtual machine itself. Values of primitive types need not
be tagged or otherwise be inspectable to determine their types at run time, or to be distinguished from values
of reference types. Instead, the instruction set of the Java virtual machine distinguishes its operand types using
instructions intended to operate on values of specific types. For instance, iadd, ladd, fadd, and dadd are all
Java virtual machine instructions that add two numeric values and produce numeric results, but each is
specialized for its operand type: int, long, float, and double, respectively. For a summary of type
support in the Java virtual machine instruction set, see §3.11.1.

The Java virtual machine contains explicit support for objects. An object is either a dynamically allocated
class instance or an array. A reference to an object is considered to have Java virtual machine type
reference. Values of type reference can be thought of as pointers to objects. More than one reference
to an object may exist. Objects are always operated on, passed, and tested via values of type reference.
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3.3 Primitive Types and Values

The primitive data types supported by the Java virtual machine are the numeric types, the boolean type
(§3.3.4),1 and the returnAddress type (§3.3.3). The numeric types consist of the integral types (§3.3.1)
and the floating-point types  (§3.3.2). The integral types are:

byte, whose values are 8-bit signed two's-complement integers• 
short, whose values are 16-bit signed two's-complement integers• 
int, whose values are 32-bit signed two's-complement integers• 
long, whose values are 64-bit signed two's-complement integers• 
char, whose values are 16-bit unsigned integers representing Unicode characters (§2.1)• 

The floating-point types are:

float, whose values are elements of the float value set or, where supported, the
float-extended-exponent value set

• 

double, whose values are elements of the double value set or, where supported, the
double-extended-exponent value set

• 

The values of the boolean type encode the truth values true and false.

The values of the returnAddress type are pointers to the opcodes of Java virtual machine instructions. Of
the primitive types only the returnAddress type is not directly associated with a Java programming
language type.

3.3.1 Integral Types and Values

The values of the integral types of the Java virtual machine are the same as those for the integral types of the
Java programming language (§2.4.1):

For byte, from -128 to 127 (-27 to 27-1), inclusive• 
For short, from -32768 to 32767 (-215 to 215-1), inclusive• 
For int, from -2147483648 to 2147483647 (-231 to 231-1), inclusive• 
For long, from -9223372036854775808 to 9223372036854775807 (-263 to 263-1), inclusive• 
For char, from 0 to 65535 inclusive• 

3.3.2 Floating-Point Types, Value Sets, and Values

The floating-point types are float and double, which are conceptually associated with the 32-bit
single-precision and 64-bit double-precision format IEEE 754 values and operations as specified in IEEE
Standard for Binary Floating-Point Arithmetic , ANSI/IEEE Std. 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign-magnitude numbers, but also positive
and negative zeros, positive and negative infinities, and a special Not-a-Number value (hereafter abbreviated
as "NaN"). The NaN value is used to represent the result of certain invalid operations such as dividing zero by
zero.

Every implementation of the Java virtual machine is required to support two standard sets of floating-point
values, called the float value set and the double value set. In addition, an implementation of the Java virtual
machine may, at its option, support either or both of two extended-exponent floating-point value sets, called
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the float-extended-exponent value set and the double-extended-exponent value set. These extended-exponent
value sets may, under certain circumstances, be used instead of the standard value sets to represent the values
of type float or double.

The finite nonzero values of any floating-point value set can all be expressed in the form s · m·  2(e  -N  +  1),
where s is +1 or -1, m is a positive integer less than 2N, and e is an integer between Emin = - (2K  -1-2) and
Emax = 2K  -1-1, inclusive, and where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a value v in a value set might
be represented in this form using certain values for s, m, and e, then if it happened that m were even and e
were less than 2K  -1, one could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m  2N  -1; otherwise the representation is said to
be denormalized. If a value in a value set cannot be represented in such a way that m  2N  -1, then the value is
said to be a denormalized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin and Emax) for the two
required and two optional floating-point value sets are summarized in Table 3.1. 

Parameter float float-extended- exponent double double-extended- exponent
N 24 24 53 53
K 8  11 11  15
Emax +127  +1023 +1023  +16383
Emin -126  -1022 -1022  -16382

Where one or both extended-exponent value sets are supported by an implementation, then for each
supported extended-exponent value set there is a specific implementation-dependent constant K, whose value
is constrained by Table 3.1; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are ascribed to it above, but also
the five values positive zero, negative zero, positive infinity, negative infinity, and NaN.

Note that the constraints in Table 3.1 are designed so that every element of the float value set is necessarily
also an element of the float-extended-exponent value set, the double value set, and the
double-extended-exponent value set. Likewise, each element of the double value set is necessarily also an
element of the double-extended-exponent value set. Each extended-exponent value set has a larger range of
exponent values than the corresponding standard value set, but does not have more precision.

The elements of the float value set are exactly the values that can be represented using the single
floating-point format defined in the IEEE 754 standard, except that there is only one NaN value (IEEE 754
specifies 224 - 2 distinct NaN values). The elements of the double value set are exactly the values that can be
represented using the double floating-point format defined in the IEEE 754 standard, except that there is only
one NaN value (IEEE 754 specifies 253 - 2 distinct NaN values). Note, however, that the elements of the
float-extended-exponent and double-extended-exponent value sets defined here do not correspond to the
values that be represented using IEEE 754 single extended and double extended formats, respectively. This
specification does not mandate a specific representation for the values of the floating-point value sets except
where floating-point values must be represented in the class file format (§4.4.4, §4.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value sets are not types. It is
always correct for an implementation of the Java virtual machine to use an element of the float value set to
represent a value of type float; however, it may be permissible in certain contexts for an implementation to
use an element of the float-extended-exponent value set instead. Similarly, it is always correct for an
implementation to use an element of the double value set to represent a value of type double; however, it may
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be permissible in certain contexts for an implementation to use an element of the double-extended-exponent
value set instead.

Except for NaNs, values of the floating-point value sets are ordered. When arranged from smallest to largest,
they are negative infinity, negative finite values, positive and negative zero, positive finite values, and positive
infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but there are other operations
that can distinguish them; for example, dividing 1.0 by 0.0 produces positive infinity, but dividing 1.0 by
-0.0 produces negative infinity.

NaNs are unordered, so numerical comparisons and tests for numerical equality have the value false if
either or both of their operands are NaN. In particular, a test for numerical equality of a value against itself has
the value false if and only if the value is NaN. A test for numerical inequality has the value true if either
operand is NaN.

3.3.3 The returnAddress Type and Values

The returnAddress type is used by the Java virtual machine's jsr, ret, and jsr_w instructions. The values
of the returnAddress type are pointers to the opcodes of Java virtual machine instructions. Unlike the
numeric primitive types, the returnAddress type does not correspond to any Java programming language
type and cannot be modified by the running program.

3.3.4 The boolean Type

Although the Java virtual machine defines a boolean type, it only provides very limited support for it.
There are no Java virtual machine instructions solely dedicated to operations on boolean values. Instead,
expressions in the Java programming language that operate on boolean values are compiled to use values of
the Java virtual machine int data type.

The Java virtual machine does directly support boolean arrays. Its newarray instruction enables creation of
boolean arrays. Arrays of type boolean are accessed and modified using the byte array instructions
baload and bastore.2

The Java virtual machine encodes boolean array components using 1 to represent true and 0 to represent
false. Where Java programming language boolean values are mapped by compilers to values of Java
virtual machine type int, the compilers must use the same encoding.

3.4 Reference Types and Values

There are three kinds of reference types: class types, array types, and interface types. Their values are
references to dynamically created class instances, arrays, or class instances or arrays that implement
interfaces, respectively. A reference value may also be the special null reference, a reference to no object,
which will be denoted here by null. The null reference initially has no runtime type, but may be cast to
any type (§2.4).

The Java virtual machine specification does not mandate a concrete value encoding null.
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3.5 Runtime Data Areas

The Java virtual machine defines various runtime data areas that are used during execution of a program.
Some of these data areas are created on Java virtual machine start-up and are destroyed only when the Java
virtual machine exits. Other data areas are per thread. Per-thread data areas are created when a thread is
created and destroyed when the thread exits.

3.5.1 The pc Register

The Java virtual machine can support many threads of execution at once (§2.19). Each Java virtual machine
thread has its own pc (program counter) register. At any point, each Java virtual machine thread is executing
the code of a single method, the current method (§3.6) for that thread. If that method is not native, the pc
register contains the address of the Java virtual machine instruction currently being executed. If the method
currently being executed by the thread is native, the value of the Java virtual machine's pc register is
undefined. The Java virtual machine's pc register is wide enough to hold a returnAddress or a native
pointer on the specific platform.

3.5.2 Java Virtual Machine Stacks

Each Java virtual machine thread has a private Java virtual machine stack, created at the same time as the
thread.3 A Java virtual machine stack stores frames (§3.6). A Java virtual machine stack is analogous to the
stack of a conventional language such as C: it holds local variables and partial results, and plays a part in
method invocation and return. Because the Java virtual machine stack is never manipulated directly except to
push and pop frames, frames may be heap allocated. The memory for a Java virtual machine stack does not
need to be contiguous.

The Java virtual machine specification permits Java virtual machine stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the Java virtual machine stacks are of a
fixed size, the size of each Java virtual machine stack may be chosen independently when that stack is created.
A Java virtual machine implementation may provide the programmer or the user control over the initial size of
Java virtual machine stacks, as well as, in the case of dynamically expanding or contracting Java virtual
machine stacks, control over the maximum and minimum sizes.4

The following exceptional conditions are associated with Java virtual machine stacks:

If the computation in a thread requires a larger Java virtual machine stack than is permitted, the Java
virtual machine throws a StackOverflowError.

• 

If Java virtual machine stacks can be dynamically expanded, and expansion is attempted but
insufficient memory can be made available to effect the expansion, or if insufficient memory can be
made available to create the initial Java virtual machine stack for a new thread, the Java virtual
machine throws an OutOfMemoryError.

• 

3.5.3 Heap

The Java virtual machine has a heap that is shared among all Java virtual machine threads. The heap is the
runtime data area from which memory for all class instances and arrays is allocated.

The heap is created on virtual machine start-up. Heap storage for objects is reclaimed by an automatic storage
management system (known as a garbage collector); objects are never explicitly deallocated. The Java virtual
machine assumes no particular type of automatic storage management system, and the storage management
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technique may be chosen according to the implementor's system requirements. The heap may be of a fixed
size or may be expanded as required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java virtual machine implementation may provide the programmer or the user control over the initial size
of the heap, as well as, if the heap can be dynamically expanded or contracted, control over the maximum and
minimum heap size.5

The following exceptional condition is associated with the heap:

If a computation requires more heap than can be made available by the automatic storage
management system, the Java virtual machine throws an OutOfMemoryError.

• 

3.5.4 Method Area

The Java virtual machine has a method area that is shared among all Java virtual machine threads. The
method area is analogous to the storage area for compiled code of a conventional language or analogous to the
"text" segment in a UNIX process. It stores per-class structures such as the runtime constant pool, field and
method data, and the code for methods and constructors, including the special methods (§3.9) used in class
and instance initialization and interface type initialization.

The method area is created on virtual machine start-up. Although the method area is logically part of the
heap, simple implementations may choose not to either garbage collect or compact it. This version of the Java
virtual machine specification does not mandate the location of the method area or the policies used to manage
compiled code. The method area may be of a fixed size or may be expanded as required by the computation
and may be contracted if a larger method area becomes unnecessary. The memory for the method area does
not need to be contiguous.

A Java virtual machine implementation may provide the programmer or the user control over the initial size
of the method area, as well as, in the case of a varying-size method area, control over the maximum and
minimum method area size.6

The following exceptional condition is associated with the method area:

If memory in the method area cannot be made available to satisfy an allocation request, the Java
virtual machine throws an OutOfMemoryError.

• 

3.5.5 Runtime Constant Pool

A runtime constant pool is a per-class or per-interface runtime representation of the constant_pool table
in a class file (§4.4). It contains several kinds of constants, ranging from numeric literals known at compile
time to method and field references that must be resolved at run time. The runtime constant pool serves a
function similar to that of a symbol table for a conventional programming language, although it contains a
wider range of data than a typical symbol table.

Each runtime constant pool is allocated from the Java virtual machine's method area (§3.5.4). The runtime
constant pool for a class or interface is constructed when the class or interface is created (§5.3) by the Java
virtual machine.

The following exceptional condition is associated with the construction of the runtime constant pool for a
class or interface:
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When creating a class or interface, if the construction of the runtime constant pool requires more
memory than can be made available in the method area of the Java virtual machine, the Java virtual
machine throws an OutOfMemoryError.

• 

See Chapter 5 for information about the construction of the runtime constant pool.

3.5.6 Native Method Stacks

An implementation of the Java virtual machine may use conventional stacks, colloquially called "C stacks,"
to support native methods, methods written in a language other than the Java programming language.
Native method stacks may also be used by the implementation of an interpreter for the Java virtual machine's
instruction set in a language such as C. Java virtual machine implementations that cannot load native
methods and that do not themselves rely on conventional stacks need not supply native method stacks. If
supplied, native method stacks are typically allocated per thread when each thread is created.

The Java virtual machine specification permits native method stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the native method stacks are of a fixed
size, the size of each native method stack may be chosen independently when that stack is created. In any
case, a Java virtual machine implementation may provide the programmer or the user control over the initial
size of the native method stacks. In the case of varying-size native method stacks, it may also make available
control over the maximum and minimum method stack sizes.7

The following exceptional conditions are associated with native method stacks:

If the computation in a thread requires a larger native method stack than is permitted, the Java virtual
machine throws a StackOverflowError.

• 

If native method stacks can be dynamically expanded and native method stack expansion is attempted
but insufficient memory can be made available, or if insufficient memory can be made available to
create the initial native method stack for a new thread, the Java virtual machine throws an
OutOfMemoryError.

• 

3.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic linking , return values for
methods, and dispatch exceptions.

A new frame is created each time a method is invoked. A frame is destroyed when its method invocation
completes, whether that completion is normal or abrupt (it throws an uncaught exception). Frames are
allocated from the Java virtual machine stack (§3.5.2) of the thread creating the frame. Each frame has its own
array of local variables (§3.6.1), its own operand stack (§3.6.2), and a reference to the runtime constant pool
(§3.5.5) of the class of the current method.

The sizes of the local variable array and the operand stack are determined at compile time and are supplied
along with the code for the method associated with the frame (§4.7.3). Thus the size of the frame data
structure depends only on the implementation of the Java virtual machine, and the memory for these structures
can be allocated simultaneously on method invocation.

Only one frame, the frame for the executing method, is active at any point in a given thread of control. This
frame is referred to as the current frame, and its method is known as the current method. The class in which
the current method is defined is the current class. Operations on local variables and the operand stack are
typically with reference to the current frame.
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A frame ceases to be current if its method invokes another method or if its method completes. When a
method is invoked, a new frame is created and becomes current when control transfers to the new method. On
method return, the current frame passes back the result of its method invocation, if any, to the previous frame.
The current frame is then discarded as the previous frame becomes the current one.

Note that a frame created by a thread is local to that thread and cannot be referenced by any other thread.

3.6.1 Local Variables

Each frame (§3.6) contains an array of variables known as its local variables. The length of the local variable
array of a frame is determined at compile time and supplied in the binary representation of a class or interface
along with the code for the method associated with the frame (§4.7.3).

A single local variable can hold a value of type boolean, byte, char, short, int, float,
reference, or returnAddress. A pair of local variables can hold a value of type long or double.

Local variables are addressed by indexing. The index of the first local variable is zero. An integer is be
considered to be an index into the local variable array if and only if that integer is between zero and one less
than the size of the local variable array.

A value of type long or type double occupies two consecutive local variables. Such a value may only be
addressed using the lesser index. For example, a value of type double stored in the local variable array at
index n actually occupies the local variables with indices n and n  +1; however, the local variable at index n
 +1 cannot be loaded from. It can be stored into. However, doing so invalidates the contents of local variable
n.

The Java virtual machine does not require n to be even. In intuitive terms, values of types double and long
need not be 64-bit aligned in the local variables array. Implementors are free to decide the appropriate way to
represent such values using the two local variables reserved for the value.

The Java virtual machine uses local variables to pass parameters on method invocation. On class method
invocation any parameters are passed in consecutive local variables starting from local variable 0. On instance
method invocation, local variable 0 is always used to pass a reference to the object on which the instance
method is being invoked (this in the Java programming language). Any parameters are subsequently passed
in consecutive local variables starting from local variable 1.

3.6.2 Operand Stacks

Each frame (§3.6) contains a last-in-first-out (LIFO) stack known as its operand stack. The maximum depth
of the operand stack of a frame is determined at compile time and is supplied along with the code for the
method associated with the frame (§4.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of the current frame as simply the
operand stack.

The operand stack is empty when the frame that contains it is created. The Java virtual machine supplies
instructions to load constants or values from local variables or fields onto the operand stack. Other Java virtual
machine instructions take operands from the operand stack, operate on them, and push the result back onto the
operand stack. The operand stack is also used to prepare parameters to be passed to methods and to receive
method results.
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For example, the iadd instruction adds two int values together. It requires that the int values to be added
be the top two values of the operand stack, pushed there by previous instructions. Both of the int values are
popped from the operand stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can be used by the
encompassing computation.

Each entry on the operand stack can hold a value of any Java virtual machine type, including a value of type
long or type double.

Values from the operand stack must be operated upon in ways appropriate to their types. It is not possible, for
example, to push two int values and subsequently treat them as a long or to push two float values and
subsequently add them with an iadd instruction. A small number of Java virtual machine instructions (the dup
instructions and swap) operate on runtime data areas as raw values without regard to their specific types; these
instructions are defined in such a way that they cannot be used to modify or break up individual values. These
restrictions on operand stack manipulation are enforced through class file verification (§4.9).

At any point in time an operand stack has an associated depth, where a value of type long or double
contributes two units to the depth and a value of any other type contributes one unit.

3.6.3 Dynamic Linking

Each frame (§3.6) contains a reference to the runtime constant pool (§3.5.5) for the type of the current
method to support dynamic linking of the method code. The class file code for a method refers to methods
to be invoked and variables to be accessed via symbolic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary to resolve as-yet-undefined
symbols, and translates variable accesses into appropriate offsets in storage structures associated with the
runtime location of these variables.

This late binding of the methods and variables makes changes in other classes that a method uses less likely
to break this code.

3.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an exception (§2.16, §3.10) to be
thrown, either directly from the Java virtual machine or as a result of executing an explicit throw statement.
If the invocation of the current method completes normally, then a value may be returned to the invoking
method. This occurs when the invoked method executes one of the return instructions (§3.11.8), the choice of
which must be appropriate for the type of the value being returned (if any).

The current frame (§3.6) is used in this case to restore the state of the invoker, including its local variables
and operand stack, with the program counter of the invoker appropriately incremented to skip past the method
invocation instruction. Execution then continues normally in the invoking method's frame with the returned
value (if any) pushed onto the operand stack of that frame.

3.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java virtual machine instruction within the method
causes the Java virtual machine to throw an exception (§2.16, §3.10), and that exception is not handled within
the method. Execution of an athrow instruction also causes an exception to be explicitly thrown and, if the
exception is not caught by the current method, results in abrupt method invocation completion. A method
invocation that completes abruptly never returns a value to its invoker.
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3.6.6 Additional Information

A frame may be extended with additional implementation-specific information, such as debugging
information.

3.7 Representation of Objects

The Java virtual machine does not mandate any particular internal structure for objects.8

3.8 Floating-Point Arithmetic

The Java virtual machine incorporates a subset of the floating-point arithmetic specified in IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Std. 754-1985, New York).

3.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE 754

The key differences between the floating-point arithmetic supported by the Java virtual machine and the
IEEE 754 standard are:

The floating-point operations of the Java virtual machine do not throw exceptions, trap, or otherwise
signal the IEEE 754 exceptional conditions of invalid operation, division by zero, overflow,
underflow, or inexact. The Java virtual machine has no signaling NaN value.

• 

The Java virtual machine does not support IEEE 754 signaling floating-point comparisons.• 
The rounding operations of the Java virtual machine always use IEEE 754 round to nearest mode.
Inexact results are rounded to the nearest representable value, with ties going to the value with a zero
least-significant bit. This is the IEEE 754 default mode. But Java virtual machine instructions that
convert values of floating-point types to values of integral types round toward zero. The Java virtual
machine does not give any means to change the floating-point rounding mode.

• 

The Java virtual machine does not support either the IEEE 754 single extended or double extended
format, except insofar as the double and double-extended-exponent value sets may be said to support
the single extended format. The float-extended-exponent and double-extended-exponent value sets,
which may optionally be supported, do not correspond to the values of the IEEE 754 extended
formats: the IEEE 754 extended formats require extended precision as well as extended exponent
range.

• 

3.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-strict. The floating-point mode
of a method is determined by the setting of the ACC_STRICT bit of the access_flags item of the
method_info structure (§4.6) defining the method. A method for which this bit is set is FP-strict;
otherwise, the method is not FP-strict.

Note that this mapping of the ACC_STRICT bit implies that methods in classes compiled by a compiler that
predates the Java 2 platform, v1.2, are effectively not FP-strict.

We will refer to an operand stack as having a given floating-point mode when the method whose invocation
created the frame containing the operand stack has that floating-point mode. Similarly, we will refer to a Java
virtual machine instruction as having a given floating-point mode when the method containing that instruction
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has that floating-point mode.

If a float-extended-exponent value set is supported (§3.3.2), values of type float on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set conversion (§3.8.3). If a
double-extended-exponent value set is supported (§3.3.2), values of type double on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set conversion.

In all other contexts, whether on the operand stack or elsewhere, and regardless of floating-point mode,
floating-point values of type float and double may only range over the float value set and double value
set, respectively. In particular, class and instance fields, array elements, local variables, and method
parameters may only contain values drawn from the standard value sets.

3.8.3 Value Set Conversion

An implementation of the Java virtual machine that supports an extended floating-point value set is permitted
or required, under specified circumstances, to map a value of the associated floating-point type between the
extended and the standard value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Where value set conversion is indicated, an implementation is permitted to perform one of the following
operations on a value:

If the value is of type float and is not an element of the float value set, it maps the value to the
nearest element of the float value set.

• 

If the value is of type double and is not an element of the double value set, it maps the value to the
nearest element of the double value set.

In addition, where value set conversion is indicated certain operations are required:

• 

Suppose execution of a Java virtual machine instruction that is not FP-strict causes a value of type
float to be pushed onto an operand stack that is FP-strict, passed as a parameter, or stored into a
local variable, a field, or an element of an array. If the value is not an element of the float value set, it
maps the value to the nearest element of the float value set.

• 

Suppose execution of a Java virtual machine instruction that is not FP-strict causes a value of type
double to be pushed onto an operand stack that is FP-strict, passed as a parameter, or stored into a
local variable, a field, or an element of an array. If the value is not an element of the double value set,
it maps the value to the nearest element of the double value set.

• 

Such required value set conversions may occur as a result of passing a parameter of a floating-point type
during method invocation, including native method invocation; returning a value of a floating-point type
from a method that is not FP-strict to a method that is FP-strict; or storing a value of a floating-point type into
a local variable, a field, or an array in a method that is not FP-strict.

Not all values from an extended-exponent value set can be mapped exactly to a value in the corresponding
standard value set. If a value being mapped is too large to be represented exactly (its exponent is greater than
that permitted by the standard value set), it is converted to a (positive or negative) infinity of the
corresponding type. If a value being mapped is too small to be represented exactly (its exponent is smaller
than that permitted by the standard value set), it is rounded to the nearest of a representable denormalized
value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign of the value being converted.
Value set conversion has no effect on a value that is not of a floating-point type.
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3.9 Specially Named Initialization Methods

At the level of the Java virtual machine, every constructor (§2.12) appears as an instance initialization
method that has the special name <init>. This name is supplied by a compiler. Because the name <init>
is not a valid identifier, it cannot be used directly in a program written in the Java programming language.
Instance initialization methods may be invoked only within the Java virtual machine by the invokespecial
instruction, and they may be invoked only on uninitialized class instances. An instance initialization method
takes on the access permissions (§2.7.4) of the constructor from which it was derived.

A class or interface has at most one class or interface initialization method and is initialized (§2.17.4) by
invoking that method. The initialization method of a class or interface is static and takes no arguments. It has
the special name <clinit>. This name is supplied by a compiler. Because the name <clinit> is not a
valid identifier, it cannot be used directly in a program written in the Java programming language. Class and
interface initialization methods are invoked implicitly by the Java virtual machine; they are never invoked
directly from any Java virtual machine instruction, but are invoked only indirectly as part of the class
initialization process.

3.10 Exceptions

In the Java programming language, throwing an exception results in an immediate nonlocal transfer of
control from the point where the exception was thrown. This transfer of control may abruptly complete, one
by one, multiple statements, constructor invocations, static and field initializer evaluations, and method
invocations. The process continues until a catch clause (§2.16.2) is found that handles the thrown value. If
no such clause can be found, the current thread exits.

In cases where a finally clause (§2.16.2) is used, the finally clause is executed during the propagation
of an exception thrown from the associated try block and any associated catch block, even if no catch
clause that handles the thrown exception may be found.

As implemented by the Java virtual machine, each catch or finally clause of a method is represented by
an exception handler. An exception handler specifies the range of offsets into the Java virtual machine code
implementing the method for which the exception handler is active, describes the type of exception that the
exception handler is able to handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused the exception is in the range
of offsets of the exception handler and the exception type is the same class as or a subclass of the class of
exception that the exception handler handles. When an exception is thrown, the Java virtual machine searches
for a matching exception handler in the current method. If a matching exception handler is found, the system
branches to the exception handling code specified by the matched handler.

If no such exception handler is found in the current method, the current method invocation completes
abruptly (§3.6.5). On abrupt completion, the operand stack and local variables of the current method
invocation are discarded, and its frame is popped, reinstating the frame of the invoking method. The exception
is then rethrown in the context of the invoker's frame and so on, continuing up the method invocation chain. If
no suitable exception handler is found before the top of the method invocation chain is reached, the execution
of the thread in which the exception was thrown is terminated.

The order in which the exception handlers of a method are searched for a match is important. Within a
class file the exception handlers for each method are stored in a table (§4.7.3). At run time, when an
exception is thrown, the Java virtual machine searches the exception handlers of the current method in the
order that they appear in the corresponding exception handler table in the class file, starting from the
beginning of that table. Because try statements are structured, a compiler for the Java programming
language can always order the entries of the exception handler table such that, for any thrown exception and
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any program counter value in that method, the first exception handler that matches the thrown exception
corresponds to the innermost matching catch or finally clause.

Note that the Java virtual machine does not enforce nesting of or any ordering of the exception table entries
of a method (§4.9.5). The exception handling semantics of the Java programming language are implemented
only through cooperation with the compiler. When class files are generated by some other means, the
defined search procedure ensures that all Java virtual machines will behave consistently.

More information on the implementation of catch and finally clauses is given in  Chapter 7,
"Compiling for the Java Virtual Machine."

3.11 Instruction Set Summary

A Java virtual machine instruction consists of a one-byte opcode specifying the operation to be performed,
followed by zero or more operands supplying arguments or data that are used by the operation. Many
instructions have no operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java virtual machine interpreter is effectively

do {
     fetch an opcode;
     if (operands) fetch operands;
     execute the action for the opcode;
} while (there is more to do);

The number and size of the operands are determined by the opcode. If an operand is more than one byte in
size, then it is stored in big-endian order-high-order byte first. For example, an unsigned 16-bit index into the
local variables is stored as two unsigned bytes, byte1 and byte2, such that its value is

(byte1 << 8) | byte2

The bytecode instruction stream is only single-byte aligned. The two exceptions are the tableswitch and
lookupswitch instructions, which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

The decision to limit the Java virtual machine opcode to a byte and to forgo data alignment within compiled
code reflects a conscious bias in favor of compactness, possibly at the cost of some performance in naive
implementations. A one-byte opcode also limits the size of the instruction set. Not assuming data alignment
means that immediate data larger than a byte must be constructed from bytes at run time on many machines.

3.11.1 Types and the Java Virtual Machine

Most of the instructions in the Java virtual machine instruction set encode type information about the
operations they perform. For instance, the iload instruction loads the contents of a local variable, which must
be an int, onto the operand stack. The fload instruction does the same with a float value. The two
instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented explicitly in the opcode mnemonic
by a letter: i for an int operation, l for long, s for short, b for byte, c for char, f for float, d for
double, and a for reference. Some instructions for which the type is unambiguous do not have a type
letter in their mnemonic. For instance, arraylength always operates on an object that is an array. Some
instructions, such as goto, an unconditional control transfer, do not operate on typed operands.
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Given the Java virtual machine's one-byte opcode size, encoding types into opcodes places pressure on the
design of its instruction set. If each typed instruction supported all of the Java virtual machine's runtime data
types, there would be more instructions than could be represented in a byte. Instead, the instruction set of the
Java virtual machine provides a reduced level of type support for certain operations. In other words, the
instruction set is intentionally not orthogonal. Separate instructions can be used to convert between
unsupported and supported data types as necessary.

Table 3.2 summarizes the type support in the instruction set of the Java virtual machine. A specific
instruction, with type information, is built by replacing the T in the instruction template in the opcode column
by the letter in the type column. If the type column for some instruction template and type is blank, then no
instruction exists supporting that type of operation. For instance, there is a load instruction for type int,
iload, but there is no load instruction for type byte.

Note that most instructions in Table 3.2 do not have forms for the integral types byte, char, and short.
None have forms for the boolean type. Compilers encode loads of literal values of types byte and short
using Java virtual machine instructions that sign-extend those values to values of type int at compile time or
run time. Loads of literal values of types boolean and char are encoded using instructions that zero-extend
the literal to a value of type int at compile time or run time. Likewise, loads from arrays of values of type
boolean, byte, short, and char are encoded using Java virtual machine instructions that sign-extend or
zero-extend the values to values of type int. Thus, most operations on values of actual types boolean,
byte, char, and short are correctly performed by instructions operating on values of computational type
int.

opcode byte short int long float double char reference
Tipush bipush sipush
Tconst iconst lconst fconst dconst aconst
Tload iload lload fload dload aload
Tstore istore lstore fstore dstore astore
Tinc iinc
Taload baload saload iaload laload faload daload caload aaload
Tastore bastore sastore iastore lastore fastore dastore castore aastore
Tadd iadd ladd fadd dadd
Tsub isub lsub fsub dsub
Tmul imul lmul fmul dmul
Tdiv idiv ldiv fdiv ddiv
Trem irem lrem frem drem
Tneg ineg lneg fneg dneg
Tshl ishl lshl
Tshr ishr lshr
Tushr iushr lushr
Tand iand land
Tor ior lor
Txor ixor lxor
i2T i2b i2s i2l i2f i2d
l2T l2i l2f l2d
f2T f2i f2l f2d
d2T d2i d2l d2f
Tcmp lcmp
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Tcmpl fcmpl dcmpl
Tcmpg fcmpg dcmpg
if_TcmpOP if_icmpOP if_acmpOP
Treturn ireturn lreturn freturn dreturn areturn

The mapping between Java virtual machine actual types and Java virtual machine computational types is
summarized by Table 3.3. 

Actual Type Computational Type Category
boolean int category 1
byte int category 1
char int category 1
short int category 1
int int category 1
float float category 1
reference reference category 1
returnAddress returnAddress category 1
long long category 2
double double category 2

Certain Java virtual machine instructions such as pop and swap operate on the operand stack without regard
to type; however, such instructions are constrained to use only on values of certain categories of
computational types, also given in Table 3.3.

The remainder of this chapter summarizes the Java virtual machine instruction set.

3.11.2 Load and Store Instructions

The load and store instructions transfer values between the local variables (§3.6.1) and the operand stack
(§3.6.2) of a Java virtual machine frame (§3.6):

Load a local variable onto the operand stack: iload, iload_<n>, lload, lload_<n>, fload, fload_<n>,
dload, dload_<n>, aload, aload_<n>.

• 

Store a value from the operand stack into a local variable: istore, istore_<n>, lstore, lstore_<n>,
fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• 

Load a constant onto the operand stack: bipush, sipush, ldc, ldc_w, ldc2_w, aconst_null, iconst_m1,
iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

• 

Gain access to more local variables using a wider index, or to a larger immediate operand: wide.• 

Instructions that access fields of objects and elements of arrays (§3.11.5) also transfer data to and from the
operand stack.

Instruction mnemonics shown above with trailing letters between angle brackets (for instance, iload_<n>)
denote families of instructions (with members iload_0, iload_1, iload_2, and iload_3 in the case of
iload_<n>). Such families of instructions are specializations of an additional generic instruction (iload) that
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takes one operand. For the specialized instructions, the operand is implicit and does not need to be stored or
fetched. The semantics are otherwise the same (iload_0 means the same thing as iload with the operand 0).
The letter between the angle brackets specifies the type of the implicit operand for that family of instructions:
for <n>, a nonnegative integer; for <i>, an int; for <l>, a long; for <f>, a float; and for <d>, a
double. Forms for type int are used in many cases to perform operations on values of type byte, char,
and short (§3.11.1).

This notation for instruction families is used throughout The JavaTM Virtual Machine Specification.

3.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typically a function of two values on the operand stack,
pushing the result back on the operand stack. There are two main kinds of arithmetic instructions: those
operating on integer values and those operating on floating-point values. Within each of these kinds, the
arithmetic instructions are specialized to Java virtual machine numeric types. There is no direct support for
integer arithmetic on values of the byte, short, and char types (§3.11.1), or for values of the boolean
type; those operations are handled by instructions operating on type int. Integer and floating-point
instructions also differ in their behavior on overflow and divide-by-zero. The arithmetic instructions are as
follows:

Add: iadd, ladd, fadd, dadd.• 
Subtract: isub, lsub, fsub, dsub.• 
Multiply: imul, lmul, fmul, dmul.• 
Divide: idiv, ldiv, fdiv, ddiv.• 
Remainder: irem, lrem, frem, drem.• 
Negate: ineg, lneg, fneg, dneg.• 
Shift: ishl, ishr, iushr, lshl, lshr, lushr.• 
Bitwise OR: ior, lor.• 
Bitwise AND: iand, land.• 
Bitwise exclusive OR: ixor, lxor.• 
Local variable increment: iinc.• 
Comparison: dcmpg, dcmpl, fcmpg, fcmpl, lcmp.• 

The semantics of the Java programming language operators on integer and floating-point values (§2.4.2,
§2.4.4) are directly supported by the semantics of the Java virtual machine instruction set.

The Java virtual machine does not indicate overflow during operations on integer data types. The only integer
operations that can throw an exception are the integer divide instructions (idiv and ldiv) and the integer
remainder instructions (irem and lrem), which throw an ArithmeticException if the divisor is zero.

Java virtual machine operations on floating-point numbers behave as specified in IEEE 754. In particular, the
Java virtual machine requires full support of IEEE 754 denormalized floating-point numbers and gradual
underflow, which make it easier to prove desirable properties of particular numerical algorithms.

The Java virtual machine requires that floating-point arithmetic behave as if every floating-point operator
rounded its floating-point result to the result precision. Inexact results must be rounded to the representable
value nearest to the infinitely precise result; if the two nearest representable values are equally near, the one
having a least significant bit of zero is chosen. This is the IEEE 754 standard's default rounding mode, known
as round to nearest mode.

The Java virtual machine uses the IEEE 754 round towards zero mode when converting a floating-point
value to an integer. This results in the number being truncated; any bits of the significand that represent the
fractional part of the operand value are discarded. Round towards zero mode chooses as its result the type's
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value closest to, but no greater in magnitude than, the infinitely precise result.

The Java virtual machine's floating-point operators do not throw runtime exceptions (not to be confused with
IEEE 754 floating-point exceptions). An operation that overflows produces a signed infinity, an operation that
underflows produces a denormalized value or a signed zero, and an operation that has no mathematically
definite result produces NaN. All numeric operations with NaN as an operand produce NaN as a result.

Comparisons on values of type long (lcmp) perform a signed comparison. Comparisons on values of
floating-point types (dcmpg, dcmpl, fcmpg, fcmpl) are performed using IEEE 754 nonsignaling comparisons.

3.11.4 Type Conversion Instructions

The type conversion instructions allow conversion between Java virtual machine numeric types. These may
be used to implement explicit conversions in user code or to mitigate the lack of orthogonality in the
instruction set of the Java virtual machine.

The Java virtual machine directly supports the following widening numeric conversions:

int to long, float, or double• 
long to float or double• 
float to double• 

The widening numeric conversion instructions are i2l, i2f, i2d, l2f, l2d, and f2d. The mnemonics for these
opcodes are straightforward given the naming conventions for typed instructions and the punning use of 2 to
mean "to." For instance, the i2d instruction converts an int value to a double. Widening numeric
conversions do not lose information about the overall magnitude of a numeric value. Indeed, conversions
widening from int to long and int to double do not lose any information at all; the numeric value is
preserved exactly. Conversions widening from float to double that are FP-strict (§3.8.2) also preserve the
numeric value exactly; however, such conversions that are not FP-strict may lose information about the
overall magnitude of the converted value.

Conversion of an int or a long value to float, or of a long value to double, may lose precision, that
is, may lose some of the least significant bits of the value; the resulting floating-point value is a correctly
rounded version of the integer value, using IEEE 754 round to nearest mode.

A widening numeric conversion of an int to a long simply sign-extends the two's-complement
representation of the int value to fill the wider format. A widening numeric conversion of a char to an
integral type zero-extends the representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, widening numeric conversions never cause the Java virtual
machine to throw a runtime exception (not to be confused with an IEEE 754 floating-point exception).

Note that widening numeric conversions do not exist from integral types byte, char, and short to type
int. As noted in §3.11.1, values of type byte, char, and short are internally widened to type int,
making these conversions implicit.

The Java virtual machine also directly supports the following narrowing numeric conversions:

int to byte, short, or char• 
long to int• 
float to int or long• 
double to int, long, or float• 
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The narrowing numeric conversion instructions are i2b, i2c, i2s, l2i, f2i, f2l, d2i, d2l, and d2f. A narrowing
numeric conversion can result in a value of different sign, a different order of magnitude, or both; it may
thereby lose precision.

A narrowing numeric conversion of an int or long to an integral type T simply discards all but the N
lowest-order bits, where N is the number of bits used to represent type T. This may cause the resulting value
not to have the same sign as the input value.

In a narrowing numeric conversion of a floating-point value to an integral type T, where T is either int or
long, the floating-point value is converted as follows:

If the floating-point value is NaN, the result of the conversion is an int or long 0.• 
Otherwise, if the floating-point value is not an infinity, the floating-point value is rounded to an
integer value V using IEEE 754 round towards zero mode. There are two cases:

If T is long and this integer value can be represented as a long, then the result is the long
value V.

♦ 

If T is of type int and this integer value can be represented as an int, then the result is the
int value V.

♦ 

• 

Otherwise:

Either the value must be too small (a negative value of large magnitude or negative infinity),
and the result is the smallest representable value of type int or long.

♦ 

Or the value must be too large (a positive value of large magnitude or positive infinity), and
the result is the largest representable value of type int or long.

♦ 

• 

A narrowing numeric conversion from double to float behaves in accordance with IEEE 754. The result
is correctly rounded using IEEE 754 round to nearest mode. A value too small to be represented as a float
is converted to a positive or negative zero of type float; a value too large to be represented as a float is
converted to a positive or negative infinity. A double NaN is always converted to a float NaN.

Despite the fact that overflow, underflow, or loss of precision may occur, narrowing conversions among
numeric types never cause the Java virtual machine to throw a runtime exception (not to be confused with an
IEEE 754 floating-point exception).

3.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java virtual machine creates and manipulates class
instances and arrays using distinct sets of instructions:

Create a new class instance: new.• 
Create a new array: newarray, anewarray, multianewarray.• 
Access fields of classes (static fields, known as class variables) and fields of class instances
(non-static fields, known as instance variables): getfield, putfield, getstatic, putstatic.

• 

Load an array component onto the operand stack: baload, caload, saload, iaload, laload, faload,
daload, aaload.

• 

Store a value from the operand stack as an array component: bastore, castore, sastore, iastore,
lastore, fastore, dastore, aastore.

• 

Get the length of array: arraylength.• 
Check properties of class instances or arrays: instanceof, checkcast.• 
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3.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the operand stack: pop, pop2, dup, dup2,
dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

3.11.7 Control Transfer Instructions

The control transfer instructions conditionally or unconditionally cause the Java virtual machine to continue
execution with an instruction other than the one following the control transfer instruction. They are:

Conditional branch: ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmplt,
if_icmpgt, if_icmple, if_icmpge, if_acmpeq, if_acmpne.

• 

Compound conditional branch: tableswitch, lookupswitch.• 
Unconditional branch: goto, goto_w, jsr, jsr_w, ret.• 

The Java virtual machine has distinct sets of instructions that conditionally branch on comparison with data
of int and reference types. It also has distinct conditional branch instructions that test for the null
reference and thus is not required to specify a concrete value for null (§3.4).

Conditional branches on comparisons between data of types boolean, byte, char, and short are
performed using int comparison instructions (§3.11.1). A conditional branch on a comparison between data
of types long, float, or double is initiated using an instruction that compares the data and produces an
int result of the comparison (§3.11.3). A subsequent int comparison instruction tests this result and effects
the conditional branch. Because of its emphasis on int comparisons, the Java virtual machine provides a rich
complement of conditional branch instructions for type int.

All int conditional control transfer instructions perform signed comparisons.

3.11.8 Method Invocation and Return Instructions

The following four instructions invoke methods:

invokevirtual invokes an instance method of an object, dispatching on the (virtual) type of the object.
This is the normal method dispatch in the Java programming language.

• 

invokeinterface invokes a method that is implemented by an interface, searching the methods
implemented by the particular runtime object to find the appropriate method.

• 

invokespecial invokes an instance method requiring special handling, whether an instance
initialization method (§3.9), a private method, or a superclass method.

• 

invokestatic invokes a class (static) method in a named class.• 

The method return instructions, which are distinguished by return type, are ireturn (used to return values of
type boolean, byte, char, short, or int), lreturn, freturn , dreturn, and areturn. In addition, the return
instruction is used to return from methods declared to be void, instance initialization methods, and class or
interface initialization methods.

3.11.9 Throwing Exceptions

An exception is thrown programmatically using the athrow instruction. Exceptions can also be thrown by
various Java virtual machine instructions if they detect an abnormal condition.

The Structure of the Java Virtual Machine

73



3.11.10 Implementing finally

The implementation of the finally keyword uses the jsr, jsr_w, and ret instructions. See Section 4.9.6,
"Exceptions and finally," and Section 7.13, "Compiling finally."

3.11.11 Synchronization

The Java virtual machine supports synchronization of both methods and sequences of instructions within a
method using a single synchronization construct: the monitor .

Method-level synchronization is handled as part of method invocation and return (see Section 3.11.8,
"Method Invocation and Return Instructions").

Synchronization of sequences of instructions is typically used to encode the synchronized blocks of the Java
programming language. The Java virtual machine supplies the monitorenter and monitorexit instructions to
support such constructs.

Proper implementation of synchronized blocks requires cooperation from a compiler targeting the Java virtual
machine. The compiler must ensure that at any method invocation completion a monitorexit instruction will
have been executed for each monitorenter instruction executed since the method invocation. This must be the
case whether the method invocation completes normally (§3.6.4) or abruptly (§3.6.5).

The compiler enforces proper pairing of monitorenter and monitorexit instructions on abrupt method
invocation completion by generating exception handlers (§3.10) that will match any exception and whose
associated code executes the necessary monitorexit instructions (§7.14).

3.12 Class Libraries

The Java virtual machine must provide sufficient support for the implementation of the class libraries of the
associated platform. Some of the classes in these libraries cannot be implemented without the cooperation of
the Java virtual machine.

Classes that might require special support from the Java virtual machine include those that support:

Reflection, such as the classes in the package java.lang.reflect and the class Class.• 
Loading and creation of a class or interface. The most obvious example is the class ClassLoader.• 
Linking and initialization of a class or interface. The example classes cited above fall into this
category as well.

• 

Security, such as the classes in the package java.security and other classes such as
SecurityManager.

• 

Multithreading, such as the class Thread.• 
Weak references, such as the classes in the package java.lang.ref.9• 

The list above is meant to be illustrative rather than comprehensive. An exhaustive list of these classes or of
the functionality they provide is beyond the scope of this book. See the specifications of the Java and Java 2
platform class libraries for details.
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3.13 Public Design, Private Implementation

Thus far this book has sketched the public view of the Java virtual machine: the class file format and the
instruction set. These components are vital to the hardware-, operating system-, and
implementation-independence of the Java virtual machine. The implementor may prefer to think of them as a
means to securely communicate fragments of programs between hosts each implementing the Java or Java 2
platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the private implementation lies. A
Java virtual machine implementation must be able to read class files and must exactly implement the
semantics of the Java virtual machine code therein. One way of doing this is to take this document as a
specification and to implement that specification literally. But it is also perfectly feasible and desirable for the
implementor to modify or optimize the implementation within the constraints of this specification. So long as
the class file format can be read and the semantics of its code are maintained, the implementor may
implement these semantics in any way. What is "under the hood" is the implementor's business, as long as the
correct external interface is carefully maintained.10

The implementor can use this flexibility to tailor Java virtual machine implementations for high performance,
low memory use, or portability. What makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

Translating Java virtual machine code at load time or during execution into the instruction set of
another virtual machine.

• 

Translating Java virtual machine code at load time or during execution into the native instruction set
of the host CPU (sometimes referred to as just-in-time, or JIT, code generation).

• 

The existence of a precisely defined virtual machine and object file format need not significantly restrict the
creativity of the implementor. The Java virtual machine is designed to support many different
implementations, providing new and interesting solutions while retaining compatibility between
implementations.

1 The first edition of The JavaTM Virtual Machine Specification did not consider boolean to be a Java virtual
machine type. However, boolean values do have limited support in the Java virtual machine. This second
edition clarifies the issue by treating boolean as a type.

2 In Sun's JDK releases 1.0 and 1.1, and the Java 2 SDK, Standard Edition, v1.2, boolean arrays in the Java
programming language are encoded as Java virtual machine byte arrays, using 8 bits per boolean element.

3 In the first edition of this specification, the Java virtual machine stack was known as the Java stack.

4 In Sun's implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2 SDK,
Standard Edition, v1.2, Java virtual machine stacks are discontiguous and are independently expanded as
required by the computation. Those implementations do not free memory allocated for a Java virtual machine
stack until the associated thread terminates. Expansion is subject to a size limit for any one stack. The Java
virtual machine stack size limit may be set on virtual machine start-up using the "-oss" flag. The Java virtual
machine stack size limit can be used to limit memory consumption or to catch runaway recursions.

5 Sun's implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2 SDK,
Standard Edition, v1.2, dynamically expand the heap as required by the computation, but never contract the
heap. The initial and maximum sizes may be specified on virtual machine start-up using the "-ms" and "-mx"
flags, respectively.
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6 Sun's implementation of the Java virtual machine in JDK release 1.0.2 dynamically expands the method area
as required by the computation, but never contracts the method area. The Java virtual machine
implementations in Sun's JDK release 1.1 and the Java 2 SDK, Standard Edition, v1.2 garbage collect the
method area. In neither case is user control over the initial, minimum, or maximum size of the method area
provided.

7 Sun's implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2 SDK,
Standard Edition, v1.2, allocate fixed-size native method stacks of a single size. The size of the native method
stacks may be set on virtual machine start-up using the "-ss" flag. The native method stack size limit can be
used to limit memory consumption or to catch runaway recursions in native methods. Sun's
implementations do not check for native method stack overflow.

8 In some of Sun's implementations of the Java virtual machine, a reference to a class instance is a pointer to a
handle that is itself a pair of pointers: one to a table containing the methods of the object and a pointer to the
Class object that represents the type of the object, and the other to the memory allocated from the heap for
the object data.

9 Weak references were introduced in the Java 2 platform, v1.2.

10 There are some exceptions: debuggers, profilers, and just-in-time code generators can each require access to
elements of the Java virtual machine that are normally considered to be "under the hood." Where appropriate,
Sun is working with other Java virtual machine implementors and tools vendors to develop common
interfaces to the Java virtual machine for use by such tools, and to promote those interfaces across the
industry. Information on publicly available low-level interfaces to the Java virtual machine will be made
available at http://java.sun.com.
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CHAPTER 4

The class File Format
This chapter describes the Java virtual machine class file format. Each class file contains the definition
of a single class or interface. Although a class or interface need not have an external representation literally
contained in a file (for instance, because the class is generated by a class loader), we will colloquially refer to
any valid representation of a class or interface as being in the class file format.

A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-bit quantities are constructed by
reading in two, four, and eight consecutive 8-bit bytes, respectively. Multibyte data items are always stored in
big-endian order, where the high bytes come first. In the Java and Java 2 platforms, this format is supported
by interfaces java.io.DataInput and java.io.DataOutput and classes such as
java.io.DataInputStream and java.io.DataOutputStream.

This chapter defines its own set of data types representing class file data: The types u1, u2, and u4
represent an unsigned one-, two-, or four-byte quantity, respectively. In the Java and Java 2 platforms, these
types may be read by methods such as readUnsignedByte, readUnsignedShort, and readInt of
the interface java.io.DataInput.

This chapter presents the class file format using pseudostructures written in a C-like structure notation. To
avoid confusion with the fields of classes and class instances, etc., the contents of the structures describing the
class file format are referred to as items. Successive items are stored in the class file sequentially,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in several class file structures. Although
we use C-like array syntax to refer to table items, the fact that tables are streams of varying-sized structures
means that it is not possible to translate a table index directly to a byte offset into the table.

Where we refer to a data structure as an array, it consists of zero or more contiguous fixed-sized items and
can be indexed like an array.

4.1 The ClassFile Structure

A class file consists of a single ClassFile structure:

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
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u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The items in the ClassFile structure are as follows:

magic
The magic item supplies the magic number identifying the class file format; it has the value
0xCAFEBABE.

minor_version, major_version
The values of the minor_version and major_version items are the minor and major version
numbers of this class file.Together, a major and a minor version number determine the version of
the class file format. If a class file has major version number M and minor version number m, we
denote the version of its class file format as M.m. Thus, class file format versions may be
ordered lexicographically, for example, 1.5 < 2.0 < 2.1.

A Java virtual machine implementation can support a class file format of version v if and only if v
lies in some contiguous range Mi.0  v  Mj.m. Only Sun can specify what range of versions a Java
virtual machine implementation conforming to a certain release level of the Java platform may
support.1

constant_pool_count
The value of the constant_pool_count item is equal to the number of entries in the
constant_pool table plus one. A constant_pool index is considered valid if it is greater than
zero and less than constant_pool_count, with the exception for constants of type long and
double noted in §4.4.5.

constant_pool[]
The constant_pool is a table of structures (§4.4) representing various string constants, class and
interface names, field names, and other constants that are referred to within the ClassFile
structure and its substructures. The format of each constant_pool table entry is indicated by its
first "tag" byte.

The constant_pool table is indexed from 1 to constant_pool_count-1.

access_flags
The value of the access_flags item is a mask of flags used to denote access permissions to and
properties of this class or interface. The interpretation of each flag, when set, is as shown in Table 4.1.

Flag Name Value Interpretation
ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its package.
ACC_FINAL 0x0010 Declared final; no subclasses allowed.

ACC_SUPER 0x0020
Treat superclass methods specially when invoked by the invokespecial
instruction.

ACC_INTERFACE 0x0200 Is an interface, not a class.
ACC_ABSTRACT 0x0400 Declared abstract; may not be instantiated.
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An interface is distinguished by its ACC_INTERFACE flag being set. If its ACC_INTERFACE flag is not set,
this class file defines a class, not an interface.

If the ACC_INTERFACE flag of this class file is set, its ACC_ABSTRACT flag must also be set (§2.13.1)
and its ACC_PUBLIC flag may be set. Such a class file may not have any of the other flags in Table 4.1
set.

If the ACC_INTERFACE flag of this class file is not set, it may have any of the other flags in Table 4.1 set.
However, such a class file cannot have both its ACC_FINAL and ACC_ABSTRACT flags set (§2.8.2).

The setting of the ACC_SUPER flag indicates which of two alternative semantics for its invokespecial
instruction the Java virtual machine is to express; the ACC_SUPER flag exists for backward compatibility for
code compiled by Sun's older compilers for the Java programming language. All new implementations of the
Java virtual machine should implement the semantics for invokespecial documented in this specification. All
new compilers to the instruction set of the Java virtual machine should set the ACC_SUPER flag. Sun's older
compilers generated ClassFile flags with ACC_SUPER unset. Sun's older Java virtual machine
implementations ignore the flag if it is set.

All bits of the access_flags item not assigned in Table 4.1 are reserved for future use. They should be
set to zero in generated class files and should be ignored by Java virtual machine implementations.

this_class
The value of the this_class item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Class_info (§4.4.1) structure
representing the class or interface defined by this class file.

super_class
For a class, the value of the super_class item either must be zero or must be a valid index into the
constant_pool table. If the value of the super_class item is nonzero, the constant_pool
entry at that index must be a CONSTANT_Class_info (§4.4.1) structure representing the direct
superclass of the class defined by this class file. Neither the direct superclass nor any of its
superclasses may be a final class.

If the value of the super_class item is zero, then this class file must represent the class
Object, the only class or interface without a direct superclass.

For an interface, the value of the super_class item must always be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure representing the class Object.

interfaces_count
The value of the interfaces_count item gives the number of direct superinterfaces of this class
or interface type.

interfaces[]
Each value in the interfaces array must be a valid index into the constant_pool table. The
constant_pool entry at each value of interfaces[i], where 0  i < interfaces_count,
must be a CONSTANT_Class_info (§4.4.1) structure representing an interface that is a direct
superinterface of this class or interface type, in the left-to-right order given in the source for the type.
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fields_count
The value of the fields_count item gives the number of field_info structures in the fields
table. The field_info (§4.5) structures represent all fields, both class variables and instance
variables, declared by this class or interface type.

fields[]
Each value in the fields table must be a field_info (§4.5) structure giving a complete
description of a field in this class or interface. The fields table includes only those fields that are
declared by this class or interface. It does not include items representing fields that are inherited from
superclasses or superinterfaces.

methods_count
The value of the methods_count item gives the number of method_info structures in the
methods table.

methods[]
Each value in the methods table must be a method_info (§4.6) structure giving a complete
description of a method in this class or interface. If the method is not native or abstract, the
Java virtual machine instructions implementing the method are also supplied.

The method_info structures represent all methods declared by this class or interface type,
including instance methods, class (static) methods, instance initialization methods (§3.9), and any
class or interface initialization method (§3.9). The methods table does not include items
representing methods that are inherited from superclasses or superinterfaces.

attributes_count
The value of the attributes_count item gives the number of attributes (§4.7) in the
attributes table of this class.

attributes[]
Each value of the attributes table must be an attribute structure (§4.7).

The only attributes defined by this specification as appearing in the attributes table of a
ClassFile structure are the SourceFile attribute (§4.7.7) and the Deprecated (§4.7.10)
attribute.

A Java virtual machine implementation is required to silently ignore any or all attributes in the
attributes table of a ClassFile structure that it does not recognize. Attributes not defined in
this specification are not allowed to affect the semantics of the class file, but only to provide
additional descriptive information (§4.7.1).

4.2 The Internal Form of Fully Qualified Class and Interface
Names

Class and interface names that appear in class file structures are always represented in a fully qualified
form (§2.7.5). Such names are always represented as CONSTANT_Utf8_info (§4.4.7) structures and thus
may be drawn, where not further constrained, from the entire Unicode character set. Class names and
interfaces are referenced both from those CONSTANT_NameAndType_info (§4.4.6) structures that have
such names as part of their descriptor (§4.3) and from all CONSTANT_Class_info (§4.4.1) structures.

For historical reasons the syntax of fully qualified class and interface names that appear in class file
structures differs from the familiar syntax of fully qualified names documented in §2.7.5. In this internal form,
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the ASCII periods ('.') that normally separate the identifiers that make up the fully qualified name are
replaced by ASCII forward slashes ('/'). For example, the normal fully qualified name of class Thread is
java.lang.Thread. In the form used in descriptors in the class file format, a reference to the name of
class Thread is implemented using a CONSTANT_Utf8_info structure representing the string
"java/lang/Thread".

4.3 Descriptors

A descriptor is a string representing the type of a field or method. Descriptors are represented in the class
file format using UTF-8 strings (§4.4.7) and thus may be drawn, where not further constrained, from the entire
Unicode character set.

4.3.1 Grammar Notation

Descriptors are specified using a grammar. This grammar is a set of productions that describe how sequences
of characters can form syntactically correct descriptors of various types. Terminal symbols of the grammar are
shown in bold fixed-width font. Nonterminal symbols are shown in italic type. The definition of a
nonterminal is introduced by the name of the nonterminal being defined, followed by a colon. One or more
alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the production:

FieldType:
 BaseType
 ObjectType
 ArrayType

states that a FieldType may represent either a BaseType, an ObjectType, or an ArrayType.

A nonterminal symbol on the right-hand side of a production that is followed by an asterisk (*) represents
zero or more possibly different values produced from that nonterminal, appended without any intervening
space. The production:

MethodDescriptor:
      ( ParameterDescriptor*    ) ReturnDescriptor

states that a MethodDescriptor represents a left parenthesis, followed by zero or more ParameterDescriptor
values, followed by a right parenthesis, followed by a ReturnDescriptor.

4.3.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable. It is a series of characters
generated by the grammar:

FieldDescriptor:

FieldType

ComponentType:
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FieldType

FieldType:

BaseType

ObjectType

ArrayType

BaseType:

B

C

D

F

I

J

S

Z

ObjectType:

L <classname> ;

ArrayType:

[ ComponentType

 The characters of BaseType, the L and ; of ObjectType, and the [ of ArrayType are all ASCII characters. The
<classname> represents a fully qualified class or interface name. For historical reasons it is encoded in
internal form (§4.2).

The interpretation of the field types is as shown in Table 4.2.

BaseType Character Type Interpretation
B byte signed byte
C char Unicode character
D double double-precision floating-point value
F float single-precision floating-point value
I int integer
J long long integer
L<classname>; reference an instance of class <classname>
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S short signed short
Z boolean true or false
[ reference one array dimension

For example, the descriptor of an instance variable of type int is simply I. The descriptor of an instance
variable of type Object is Ljava/lang/Object;. Note that the internal form of the fully qualified name for
class Object is used. The descriptor of an instance variable that is a multidimensional double array,

double d[][][];

is

[[[D

4.3.3 Method Descriptors

A method descriptor represents the parameters that the method takes and the value that it returns:

MethodDescriptor:
     ( ParameterDescriptor*    ) ReturnDescriptor

A parameter descriptor represents a parameter passed to a method:

ParameterDescriptor:
 FieldType

A return descriptor represents the type of the value returned from a method. It is a series of characters
generated by the grammar:

ReturnDescriptor:
 FieldType

    V

The character V indicates that the method returns no value (its return type is void).

A method descriptor is valid only if it represents method parameters with a total length of 255 or less, where
that length includes the contribution for this in the case of instance or interface method invocations. The
total length is calculated by summing the contributions of the individual parameters, where a parameter of
type long or double contributes two units to the length and a parameter of any other type contributes one
unit.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)

is
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(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified names of Thread and Object are used in the method
descriptor.

The method descriptor for mymethod is the same whether mymethod is a class or an instance method.
Although an instance method is passed this, a reference to the current class instance, in addition to its
intended parameters, that fact is not reflected in the method descriptor. (A reference to this is not passed to
a class method.) The reference to this is passed implicitly by the method invocation instructions of the Java
virtual machine used to invoke instance methods.

4.4 The Constant Pool

Java virtual machine instructions do not rely on the runtime layout of classes, interfaces, class instances, or
arrays. Instead, instructions refer to symbolic information in the constant_pool table.

All constant_pool table entries have the following general format:

cp_info {
u1 tag;
u1 info[];

}

Each item in the constant_pool table must begin with a 1-byte tag indicating the kind of cp_info
entry. The contents of the info array vary with the value of tag. The valid tags and their values are listed in
Table 4.3. Each tag byte must be followed by two or more bytes giving information about the specific
constant. The format of the additional information varies with the tag value.

Constant Type Value
CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_String 8

CONSTANT_Integer 3

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

4.4.1 The CONSTANT_Class_info Structure

The CONSTANT_Class_info structure is used to represent a class or an interface:

CONSTANT_Class_info {

The class File Format

84



u1 tag;
u2 name_index;

}

The items of the CONSTANT_Class_info structure are the following:

tag
The tag item has the value CONSTANT_Class (7).

name_index
The value of the name_index item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
representing a valid fully qualified class or interface name (§2.8.1) encoded in internal form (§4.2).

Because arrays are objects, the opcodes anewarray and multianewarray can reference array "classes" via
CONSTANT_Class_info (§4.4.1) structures in the constant_pool table. For such array classes, the
name of the class is the descriptor of the array type. For example, the class name representing a
two-dimensional int array type

int[][] 

is

[[I

The class name representing the type array of class Thread

Thread[] 

is

[Ljava/lang/Thread;

An array type descriptor is valid only if it represents 255 or fewer dimensions.

4.4.2 The CONSTANT_Fieldref_info, CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fieldref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}
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CONSTANT_InterfaceMethodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

The items of these structures are as follows:

tag
The tag item of a CONSTANT_Fieldref_info structure has the value CONSTANT_Fieldref
(9).

The tag item of a CONSTANT_Methodref_info structure has the value
CONSTANT_Methodref (10).

The tag item of a CONSTANT_InterfaceMethodref_info structure has the value
CONSTANT_InterfaceMethodref (11).

class_index
The value of the class_index item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Class_info (§4.4.1) structure
representing the class or interface type that contains the declaration of the field or method.

The class_index item of a CONSTANT_Methodref_info structure must be a class type, not
an interface type. The class_index item of a CONSTANT_InterfaceMethodref_info
structure must be an interface type. The class_index item of a CONSTANT_Fieldref_info
structure may be either a class type or an interface type.

name_and_type_index
The value of the name_and_type_index item must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a CONSTANT_NameAndType_info
(§4.4.6) structure. This constant_pool entry indicates the name and descriptor of the field or
method. In a CONSTANT_Fieldref_info the indicated descriptor must be a field descriptor
(§4.3.2). Otherwise, the indicated descriptor must be a method descriptor (§4.3.3).

If the name of the method of a CONSTANT_Methodref_info structure begins with a' <'
('\u003c'), then the name must be the special name <init>, representing an instance
initialization method (§3.9). Such a method must return no value.

4.4.3 The CONSTANT_String_info Structure

The CONSTANT_String_info structure is used to represent constant objects of the type String:

CONSTANT_String_info {
u1 tag;
u2 string_index;

}

The items of the CONSTANT_String_info structure are as follows:
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tag
The tag item of the CONSTANT_String_info structure has the value CONSTANT_String (8).

string_index
The value of the string_index item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
representing the sequence of characters to which the String object is to be initialized.

4.4.4 The CONSTANT_Integer_info and CONSTANT_Float_info
Structures

The CONSTANT_Integer_info and CONSTANT_Float_info structures represent 4-byte numeric
(int and float) constants:

CONSTANT_Integer_info {
u1 tag;
u4 bytes;

}

CONSTANT_Float_info {
u1 tag;
u4 bytes;

}

The items of these structures are as follows:

tag
The tag item of the CONSTANT_Integer_info structure has the value CONSTANT_Integer
(3).

The tag item of the CONSTANT_Float_info structure has the value CONSTANT_Float (4).

bytes
The bytes item of the CONSTANT_Integer_info structure represents the value of the int
constant. The bytes of the value are stored in big-endian (high byte first) order.

The bytes item of the CONSTANT_Float_info structure represents the value of the float
constant in IEEE 754 floating-point single format (§3.3.2). The bytes of the single format
representation are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_Float_info structure is determined as follows. The
bytes of the value are first converted into an int constant bits. Then:

If bits is 0x7f800000, the float value will be positive infinity.◊ 
If bits is 0xff800000, the float value will be negative infinity.◊ 
If bits is in the range 0x7f800001 through 0x7fffffff or in the range 0xff800001
through 0xffffffff, the float value will be NaN.

◊ 

In all other cases, let s, e, and m be three values that might be computed from bits:◊ 
int s = ((bits >> 31) == 0) ? 1 : -1;
int e = ((bits >> 23) & 0xff);
int m = (e == 0) ?
           (bits & 0x7fffff) << 1 :
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           (bits & 0x7fffff) | 0x800000;

Then the float value equals the result of the mathematical expression s·m·2e-150.

4.4.5 The CONSTANT_Long_info and CONSTANT_Double_info
Structures

The CONSTANT_Long_info and CONSTANT_Double_info represent 8-byte numeric (long
and double) constants:

CONSTANT_Long_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

CONSTANT_Double_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

All 8-byte constants take up two entries in the constant_pool table of the class file. If a
CONSTANT_Long_info or CONSTANT_Double_info structure is the item in the
constant_pool table at index n, then the next usable item in the pool is located at index n+2. The
constant_pool index n+1 must be valid but is considered unusable.2

The items of these structures are as follows:

tag
The tag item of the CONSTANT_Long_info structure has the value CONSTANT_Long
(5).

The tag item of the CONSTANT_Double_info structure has the value
CONSTANT_Double (6).

high_bytes, low_bytes
The unsigned high_bytes and low_bytes items of the CONSTANT_Long_info
structure together represent the value of the long constant ((long) high_bytes << 32) +
low_bytes, where the bytes of each of high_bytes and low_bytes are stored in
big-endian (high byte first) order.

The high_bytes and low_bytes items of the CONSTANT_Double_info structure
together represent the double value in IEEE 754 floating-point double format (§3.3.2). The
bytes of each item are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_Double_info structure is determined as
follows. The high_bytes and low_bytes items are first converted into the long
constant bits, which is equal to ((long) high_bytes << 32) + low_bytes. Then:

If bits is 0x7ff0000000000000L, the double value will be positive infinity.• 
If bits is 0xfff0000000000000L, the double value will be negative infinity.• 
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If bits is in the range 0x7ff0000000000001L through
0x7fffffffffffffffL or in the range 0xfff0000000000001L through
0xffffffffffffffffL, the double value will be NaN.

• 

In all other cases, let s, e, and m be three values that might be computed from bits:• 
int s = ((bits >> 63) == 0) ? 1 : -1;
int e = (int)((bits >> 52) & 0x7ffL);
long m = (e == 0) ?
   (bits & 0xfffffffffffffL) << 1 :
   (bits & 0xfffffffffffffL) | 0x10000000000000L;

Then the floating-point value equals the double value of the mathematical expression
s·m·2e-1075.

4.4.6 The CONSTANT_NameAndType_info Structure

The CONSTANT_NameAndType_info structure is used to represent a field or method, without
indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {
u1 tag;
u2 name_index;
u2 descriptor_index;

}

The items of the CONSTANT_NameAndType_info structure are as follows:

tag
The tag item of the CONSTANT_NameAndType_info structure has the value
CONSTANT_NameAndType (12).

name_index
The value of the name_index item must be a valid index into the constant_pool table.
The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7)
structure representing either a valid field or method name (§2.7) stored as a simple name
(§2.7.1), that is, as a Java programming language identifier (§2.2) or as the special method
name <init> (§3.9).

descriptor_index
The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing a valid field descriptor (§4.3.2) or
method descriptor (§4.3.3).

4.4.7 The CONSTANT_Utf8_info Structure

The CONSTANT_Utf8_info structure is used to represent constant string values.

UTF-8 strings are encoded so that character sequences that contain only non-null ASCII characters
can be represented using only 1 byte per character, but characters of up to 16 bits can be represented.
All characters in the range '\u0001' to '\u007F' are represented by a single byte:

0 bits 6-0
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The 7 bits of data in the byte give the value of the character represented. The null character
('\u0000') and characters in the range '\u0080' to '\u07FF' are represented by a pair of
bytes x and y:

1 1 0 bits 10-6

1 0 bits 5-0

The bytes represent the character with the value ((x & 0x1f) << 6) + (y & 0x3f).

Characters in the range '\u0800' to '\uFFFF' are represented by 3 bytes x, y, and z:

1 1 1 0 bits 15-12

1 0 bits 11-6

1 0 bits 5-0

The character with the value ((x & 0xf) << 12) + ((y & 0x3f) << 6) + (z & 0x3f) is represented
by the bytes.

The bytes of multibyte characters are stored in the class file in big-endian (high byte first) order.

There are two differences between this format and the "standard" UTF-8 format. First, the null byte
(byte)0 is encoded using the 2-byte format rather than the 1-byte format, so that Java virtual
machine UTF-8 strings never have embedded nulls. Second, only the 1-byte, 2-byte, and 3-byte
formats are used. The Java virtual machine does not recognize the longer UTF-8 formats.

For more information regarding the UTF-8 format, see File System Safe UCS Transformation Format
(FSS_UTF), X/Open Preliminary Specification (X/Open Company Ltd., Document Number: P316).
This information also appears in ISO/IEC 10646, Annex P.

The CONSTANT_Utf8_info structure is

CONSTANT_Utf8_info {
u1 tag;
u2 length;
u1 bytes[length];

}

The items of the CONSTANT_Utf8_info structure are the following:

tag
The tag item of the CONSTANT_Utf8_info structure has the value CONSTANT_Utf8
(1).

length
The value of the length item gives the number of bytes in the bytes array (not the length
of the resulting string). The strings in the CONSTANT_Utf8_info structure are not
null-terminated.
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bytes[]
The bytes array contains the bytes of the string. No byte may have the value (byte)0 or
lie in the range (byte)0xf0-(byte)0xff.

4.5 Fields

Each field is described by a field_info structure. No two fields in one class file may have the
same name and descriptor (§4.3.2). The format of this structure is

field_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];
}

The items of the field_info structure are as follows:

access_flags
The value of the access_flags item is a mask of flags used to denote access permission
to and properties of this field. The interpretation of each flag, when set, is as shown in Table
4.4.

Fields of classes may set any of the flags in Table 4.4. However, a specific field of a class
may have at most one of its ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags
set (§2.7.4) and may not have both its ACC_FINAL and ACC_VOLATILE flags set (§2.9.1).

Flag Name Value Interpretation

ACC_PUBLIC 0x0001
Declared public; may be accessed from outside its
package.

ACC_PRIVATE 0x0002 Declared private; usable only within the defining class.
ACC_PROTECTED 0x0004 Declared protected; may be accessed within subclasses.
ACC_STATIC 0x0008 Declared static.
ACC_FINAL 0x0010 Declared final; no further assignment after initialization.
ACC_VOLATILE 0x0040 Declared volatile; cannot be cached.

ACC_TRANSIENT 0x0080
Declared transient; not written or read by a persistent
object manager.

Fields of classes may set any of the flags in Table 4.4. However, a specific field of a class
may have at most one of its ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags
set (§2.7.4) and may not have both its ACC_FINAL and ACC_VOLATILE flags set (§2.9.1).

All fields of interfaces must have their ACC_PUBLIC, ACC_STATIC, and ACC_FINAL
flags set and may not have any of the other flags in Table 4.4 set (§2.13.3.1).

All bits of the access_flags item not assigned in Table 4.4 are reserved for future use.
They should be set to zero in generated class files and should be ignored by Java virtual
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machine implementations.

name_index
The value of the name_index item must be a valid index into the constant_pool table.
The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7)
structure which must represent a valid field name (§2.7) stored as a simple name (§2.7.1), that
is, as a Java programming language identifier (§2.2).

descriptor_index
The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure that must represent a valid field descriptor
(§4.3.2).

attributes_count
The value of the attributes_count item indicates the number of additional attributes
(§4.7) of this field.

attributes[]
Each value of the attributes table must be an attribute structure (§4.7). A field can have
any number of attributes associated with it.

The attributes defined by this specification as appearing in the attributes table of a
field_info structure are the ConstantValue (§4.7.2), Synthetic (§4.7.6), and
Deprecated (§4.7.10) attributes.

A Java virtual machine implementation must recognize and correctly read ConstantValue
(§4.7.2) attributes found in the attributes table of a field_info structure. A Java
virtual machine implementation is required to silently ignore any or all other attributes in the
attributes table that it does not recognize. Attributes not defined in this specification are
not allowed to affect the semantics of the class file, but only to provide additional
descriptive information (§4.7.1).

4.6 Methods

Each method, including each instance initialization method (§3.9) and the class or interface
initialization method (§3.9), is described by a method_info structure. No two methods in one
class file may have the same name and descriptor (§4.3.3).

The structure has the following format:

method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The items of the method_info structure are as follows:
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access_flags
The value of the access_flags item is a mask of flags used to denote access permission
to and properties of this method. The interpretation of each flag, when set, is as shown in
Table 4.5. 

Flag Name Value Interpretation

ACC_PUBLIC 0x0001
Declared public; may be accessed from outside its
package.

ACC_PRIVATE 0x0002
Declared private; accessible only within the defining
class.

ACC_PROTECTED 0x0004
Declared protected; may be accessed within
subclasses.

ACC_STATIC 0x0008 Declared static.
ACC_FINAL 0x0010 Declared final; may not be overridden.

ACC_SYNCHRONIZED 0x0020
Declared synchronized; invocation is wrapped in a
monitor lock.

ACC_NATIVE 0x0100
Declared native; implemented in a language other
than Java.

ACC_ABSTRACT 0x0400 Declared abstract; no implementation is provided.
ACC_STRICT 0x0800 Declared strictfp; floating-point mode is FP-strict

Methods of classes may set any of the flags in Table 4.5. However, a specific method of a
class may have at most one of its ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC
flags set (§2.7.4). If such a method has its ACC_ABSTRACT flag set it may not have any of its
ACC_FINAL, ACC_NATIVE, ACC_PRIVATE, ACC_STATIC, ACC_STRICT, or
ACC_SYNCHRONIZED flags set (§2.13.3.2).

All interface methods must have their ACC_ABSTRACT and ACC_PUBLIC flags set and may
not have any of the other flags in Table 4.5 set (§2.13.3.2).

A specific instance initialization method (§3.9) may have at most one of its ACC_PRIVATE,
ACC_PROTECTED, and ACC_PUBLIC flags set and may also have its ACC_STRICT flag
set, but may not have any of the other flags in Table 4.5 set.

Class and interface initialization methods (§3.9) are called implicitly by the Java virtual
machine; the value of their access_flags item is ignored except for the settings of the
ACC_STRICT flag.

All bits of the access_flags item not assigned in Table 4.5 are reserved for future use.
They should be set to zero in generated class files and should be ignored by Java virtual
machine implementations.

name_index
The value of the name_index item must be a valid index into the constant_pool table.
The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7)
structure representing either one of the special method names (§3.9), <init> or <clinit>,
or a valid method name in the Java programming language (§2.7), stored as a simple name
(§2.7.1).

descriptor_index
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The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing a valid method descriptor (§4.3.3).

attributes_count
The value of the attributes_count item indicates the number of additional attributes
(§4.7) of this method.

attributes[]
Each value of the attributes table must be an attribute structure (§4.7). A method can
have any number of optional attributes associated with it.

The only attributes defined by this specification as appearing in the attributes table of a
method_info structure are the Code (§4.7.3), Exceptions (§4.7.4), Synthetic
(§4.7.6), and Deprecated (§4.7.10) attributes.

A Java virtual machine implementation must recognize and correctly read Code (§4.7.3) and
Exceptions (§4.7.4) attributes found in the attributes table of a method_info
structure. A Java virtual machine implementation is required to silently ignore any or all other
attributes in the attributes table of a method_info structure that it does not recognize.
Attributes not defined in this specification are not allowed to affect the semantics of the
class file, but only to provide additional descriptive information (§4.7.1).

4.7 Attributes

Attributes are used in the ClassFile (§4.1), field_info (§4.5), method_info (§4.6), and
Code_attribute (§4.7.3) structures of the class file format. All attributes have the following
general format:

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];

}

For all attributes, the attribute_name_index must be a valid unsigned 16-bit index into the
constant pool of the class. The constant_pool entry at attribute_name_index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the name of the attribute. The value of the
attribute_length item indicates the length of the subsequent information in bytes. The length
does not include the initial six bytes that contain the attribute_name_index and
attribute_length items.

Certain attributes are predefined as part of the class file specification. The predefined attributes are
the SourceFile (§4.7.7), ConstantValue (§4.7.2), Code (§4.7.3), Exceptions (§4.7.4),
InnerClasses (§4.7.5), Synthetic (§4.7.6), LineNumberTable (§4.7.8),
LocalVariableTable (§4.7.9), and Deprecated (§4.7.10) attributes. Within the context of
their use in this specification, that is, in the attributes tables of the class file structures in
which they appear, the names of these predefined attributes are reserved.

Of the predefined attributes, the Code, ConstantValue, and Exceptions attributes must be
recognized and correctly read by a class file reader for correct interpretation of the class file by a
Java virtual machine implementation. The InnerClasses and Synthetic attributes must be
recognized and correctly read by a class file reader in order to properly implement the Java and
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Java 2 platform class libraries (§3.12). Use of the remaining predefined attributes is optional; a
class file reader may use the information they contain, or otherwise must silently ignore those
attributes.

4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit class files containing new attributes in the
attributes tables of class file structures. Java virtual machine implementations are permitted to
recognize and use new attributes found in the attributes tables of class file structures.
However, any attribute not defined as part of this Java virtual machine specification must not affect
the semantics of class or interface types. Java virtual machine implementations are required to silently
ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is permitted. Because
Java virtual machine implementations are required to ignore attributes they do not recognize, class
files intended for that particular Java virtual machine implementation will be usable by other
implementations even if those implementations cannot make use of the additional debugging
information that the class files contain.

Java virtual machine implementations are specifically prohibited from throwing an exception or
otherwise refusing to use class files simply because of the presence of some new attribute. Of
course, tools operating on class files may not run correctly if given class files that do not contain
all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same attribute name and are
of the same length, will conflict on implementations that recognize either attribute. Attributes defined
other than by Sun must have names chosen according to the package naming convention defined by
The JavaTM Language Specification. For instance, a new attribute defined by Netscape might have the
name "com.Netscape.new-attribute".3

Sun may define additional attributes in future versions of this class file specification.

4.7.2 The ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in the attributes table of the
field_info (§4.5) structures. A ConstantValue attribute represents the value of a constant
field that must be (explicitly or implicitly) static; that is, the ACC_STATIC bit (Table 4.4) in the
flags item of the field_info structure must be set. There can be no more than one
ConstantValue attribute in the attributes table of a given field_info structure. The
constant field represented by the field_info structure is assigned the value referenced by its
ConstantValue attribute as part of the initialization of the class or interface declaring the constant
field (§2.17.4). This occurs immediately prior to the invocation of the class or interface initialization
method (§3.9) of that class or interface.

If a field_info structure representing a non-static field has a ConstantValue attribute,
then that attribute must silently be ignored. Every Java virtual machine implementation must
recognize ConstantValue attributes.

The ConstantValue attribute has the following format:

ConstantValue_attribute {
u2 attribute_name_index;
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u4 attribute_length;
u2 constantvalue_index;

}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "ConstantValue".

attribute_length
The value of the attribute_length item of a ConstantValue_attribute
structure must be 2.

constantvalue_index
The value of the constantvalue_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index gives the constant value
represented by this attribute. The constant_pool entry must be of a type appropriate to
the field, as shown by Table 4.6. 

Field Type Entry Type
long CONSTANT_Long

float CONSTANT_Float

double CONSTANT_Double

int, short, char, byte, boolean CONSTANT_Integer

String CONSTANT_String

4.7.3 The Code Attribute

The Code attribute is a variable-length attribute used in the attributes table of method_info
structures. A Code attribute contains the Java virtual machine instructions and auxiliary information
for a single method, instance initialization method (§3.9), or class or interface initialization method
(§3.9). Every Java virtual machine implementation must recognize Code attributes. If the method is
either native or abstract, its method_info structure must not have a Code attribute.
Otherwise, its method_info structure must have exactly one Code attribute.

The Code attribute has the following format:

Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{          u2 start_pc;
           u2 end_pc;
           u2  handler_pc;
           u2  catch_type;
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}  exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];
}

The items of the Code_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "Code".

attribute_length
The value of the attribute_length item indicates the length of the attribute, excluding
the initial six bytes.

max_stack
The value of the max_stack item gives the maximum depth (§3.6.2) of the operand stack of
this method at any point during execution of the method.

max_locals
The value of the max_locals item gives the number of local variables in the local variable
array allocated upon invocation of this method, including the local variables used to pass
parameters to the method on its invocation.

The greatest local variable index for a value of type long or double is max_locals-2.
The greatest local variable index for a value of any other type is max_locals-1.

code_length
The value of the code_length item gives the number of bytes in the code array for this
method. The value of code_length must be greater than zero; the code array must not be
empty.

code[]
The code array gives the actual bytes of Java virtual machine code that implement the
method.

When the code array is read into memory on a byte-addressable machine, if the first byte of
the array is aligned on a 4-byte boundary, the tableswitch and lookupswitch 32-bit offsets will
be 4-byte aligned. (Refer to the descriptions of those instructions for more information on the
consequences of code array alignment.)

The detailed constraints on the contents of the code array are extensive and are given in a
separate section (§4.8).

exception_table_length
The value of the exception_table_length item gives the number of entries in the
exception_table table.

exception_table[]
Each entry in the exception_table array describes one exception handler in the code
array. The order of the handlers in the exception_table array is significant. See Section
3.10 for more details.
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Each exception_table entry contains the following four items:

start_pc, end_pc
The values of the two items start_pc and end_pc indicate the ranges in the
code array at which the exception handler is active. The value of start_pc must
be a valid index into the code array of the opcode of an instruction. The value of
end_pc either must be a valid index into the code array of the opcode of an
instruction or must be equal to code_length, the length of the code array. The
value of start_pc must be less than the value of end_pc.

The start_pc is inclusive and end_pc is exclusive; that is, the exception handler
must be active while the program counter is within the interval [start_pc,
end_pc).4

handler_pc
The value of the handler_pc item indicates the start of the exception handler. The
value of the item must be a valid index into the code array and must be the index of
the opcode of an instruction.

catch_type
If the value of the catch_type item is nonzero, it must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info (§4.4.1) structure representing a class of exceptions that
this exception handler is designated to catch. This class must be the class
Throwable or one of its subclasses. The exception handler will be called only if the
thrown exception is an instance of the given class or one of its subclasses.

If the value of the catch_type item is zero, this exception handler is called for all
exceptions. This is used to implement finally (see Section 7.13, "Compiling
finally").

attributes_count
The value of the attributes_count item indicates the number of attributes of the Code
attribute.

attributes[]
Each value of the attributes table must be an attribute structure (§4.7). A Code attribute
can have any number of optional attributes associated with it.

Currently, the LineNumberTable (§4.7.8) and LocalVariableTable (§4.7.9)
attributes, both of which contain debugging information, are defined and used with the Code
attribute.

A Java virtual machine implementation is permitted to silently ignore any or all attributes in
the attributes table of a Code attribute. Attributes not defined in this specification are
not allowed to affect the semantics of the class file, but only to provide additional
descriptive information (§4.7.1).

4.7.4 The Exceptions Attribute

The Exceptions attribute is a variable-length attribute used in the attributes table of a
method_info (§4.6) structure. The Exceptions attribute indicates which checked exceptions a
method may throw. There may be at most one Exceptions attribute in each method_info
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structure.

The Exceptions attribute has the following format:

Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];
}

The items of the Exceptions_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be the
CONSTANT_Utf8_info (§4.4.7) structure representing the string "Exceptions".

attribute_length
The value of the attribute_length item indicates the attribute length, excluding the
initial six bytes.

number_of_exceptions
The value of the number_of_exceptions item indicates the number of entries in the
exception_index_table.

exception_index_table[]
Each value in the exception_index_table array must be a valid index into the
constant_pool table. The constant_pool entry referenced by each table item must
be a CONSTANT_Class_info (§4.4.1) structure representing a class type that this method
is declared to throw.

A method should throw an exception only if at least one of the following three criteria is met:

The exception is an instance of RuntimeException or one of its subclasses.◊ 
The exception is an instance of Error or one of its subclasses.◊ 
The exception is an instance of one of the exception classes specified in the
exception_index_table just described, or one of their subclasses.

◊ 

These requirements are not enforced in the Java virtual machine; they are enforced only at compile
time.

4.7.5 The InnerClasses Attribute

The InnerClasses attribute5 is a variable-length attribute in the attributes table of the
ClassFile (§4.1) structure. If the constant pool of a class or interface refers to any class or
interface that is not a member of a package, its ClassFile structure must have exactly one
InnerClasses attribute in its attributes table.

The InnerClasses attribute has the following format:
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InnerClasses_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_classes;
{  u2 inner_class_info_index;           
   u2 outer_class_info_index;           
   u2 inner_name_index;         
   u2 inner_class_access_flags;         
} classes[number_of_classes];

}

The items of the InnerClasses_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "InnerClasses".

attribute_length
The value of the attribute_length item indicates the length of the attribute, excluding
the initial six bytes.

number_of_classes
The value of the number_of_classes item indicates the number of entries in the
classes array.

classes[]
Every CONSTANT_Class_info entry in the constant_pool table which represents a
class or interface C that is not a package member must have exactly one corresponding entry
in the classes array.

If a class has members that are classes or interfaces, its constant_pool table (and hence
its InnerClasses attribute) must refer to each such member, even if that member is not
otherwise mentioned by the class. These rules imply that a nested class or interface member
will have InnerClasses information for each enclosing class and for each immediate
member.

Each classes array entry contains the following four items:

inner_class_info_index
The value of the inner_class_info_index item must be zero or a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info (§4.4.1) structure representing C. The remaining items in the
classes array entry give information about C.

outer_class_info_index
If C is not a member, the value of the outer_class_info_index item must be zero.
Otherwise, the value of the outer_class_info_index item must be a valid index into
the constant_pool table, and the entry at that index must be a
CONSTANT_Class_info (§4.4.1) structure representing the class or interface of which C
is a member.

inner_name_index
If C is anonymous, the value of the inner_name_index item must be zero. Otherwise, the
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value of the inner_name_index item must be a valid index into the constant_pool
table, and the entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure that
represents the original simple name of C, as given in the source code from which this class
file was compiled.

inner_class_access_flags
The value of the inner_class_access_flags item is a mask of flags used to denote
access permissions to and properties of class or interface C as declared in the source code
from which this class file was compiled. It is used by compilers to recover the original
information when source code is not available. The flags are shown in Table 4.7. 

Flag Name Value Meaning
ACC_PUBLIC 0x0001 Marked or implicitly public in source.
ACC_PRIVATE 0x0002 Marked private in source.
ACC_PROTECTED 0x0004 Marked protected in source.
ACC_STATIC 0x0008 Marked or implicitly static in source.
ACC_FINAL 0x0010 Marked final in source.
ACC_INTERFACE 0x0200 Was an interface in source.
ACC_ABSTRACT 0x0400 Marked or implicitly abstract in source.

All bits of the inner_class_access_flags item not assigned in Table 4.7 are reserved
for future use. They should be set to zero in generated class files and should be ignored by
Java virtual machine implementations.

The Java virtual machine does not currently check the consistency of the InnerClasses attribute
with any class file actually representing a class or interface referenced by the attribute.

4.7.6 The Synthetic Attribute

The Synthetic attribute6 is a fixed-length attribute in the attributes table of ClassFile
(§4.1), field_info (§4.5), and method_info (§4.6) structures. A class member that does not
appear in the source code must be marked using a Synthetic attribute.

The Synthetic attribute has the following format:

Synthetic_attribute {
u2 attribute_name_index;
u4 attribute_length;

}

The items of the Synthetic_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "Synthetic".
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attribute_length
The value of the attribute_length item is zero.

4.7.7 The SourceFile Attribute

The SourceFile attribute is an optional fixed-length attribute in the attributes table of the
ClassFile (§4.1) structure. There can be no more than one SourceFile  attribute in the
attributes table of a given ClassFile structure.

The SourceFile attribute has the following format:

SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;

}

The items of the SourceFile_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "SourceFile".

attribute_length
The value of the attribute_length item of a SourceFile_attribute structure
must be 2.

sourcefile_index
The value of the sourcefile_index item must be a valid index into the
constant_pool table. The constant pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing a string.

The string referenced by the sourcefile_index item will be interpreted as indicating the
name of the source file from which this class file was compiled. It will not be interpreted as
indicating the name of a directory containing the file or an absolute path name for the file;
such platform-specific additional information must be supplied by the runtime interpreter or
development tool at the time the file name is actually used.

4.7.8 The LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in the attributes
table of a Code (§4.7.3) attribute. It may be used by debuggers to determine which part of the Java
virtual machine code array corresponds to a given line number in the original source file. If
LineNumberTable attributes are present in the attributes table of a given Code attribute,
then they may appear in any order. Furthermore, multiple LineNumberTable attributes may
together represent a given line of a source file; that is, LineNumberTable attributes need not be
one-to-one with source lines.

The LineNumberTable attribute has the following format:

LineNumberTable_attribute {
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u2 attribute_name_index;
u4 attribute_length;
u2 line_number_table_length;
{  u2 start_pc;         
   u2 line_number;      
} line_number_table[line_number_table_length];
}

The items of the LineNumberTable_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string
"LineNumberTable".

attribute_length
The value of the attribute_length item indicates the length of the attribute, excluding
the initial six bytes.

line_number_table_length
The value of the line_number_table_length item indicates the number of entries in
the line_number_table array.

line_number_table[]
Each entry in the line_number_table array indicates that the line number in the original
source file changes at a given point in the code array. Each line_number_table entry
must contain the following two items:

start_pc
The value of the start_pc item must indicate the index into the code array at which the
code for a new line in the original source file begins. The value of start_pc must be less
than the value of the code_length item of the Code attribute of which this
LineNumberTable is an attribute.

line_number
The value of the line_number item must give the corresponding line number in the
original source file.

4.7.9 The LocalVariableTable Attribute

The LocalVariableTable attribute is an optional variable-length attribute of a Code (§4.7.3)
attribute. It may be used by debuggers to determine the value of a given local variable during the
execution of a method. If LocalVariableTable attributes are present in the attributes table
of a given Code attribute, then they may appear in any order. There may be no more than one
LocalVariableTable attribute per local variable in the Code attribute.

The LocalVariableTable attribute has the following format:

LocalVariableTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 local_variable_table_length;
{  u2 start_pc;
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    u2 length;
    u2 name_index;
    u2 descriptor_index;
    u2 index;
} local_variable_table[local_variable_table_length];

}   

The items of the LocalVariableTable_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string
"LocalVariableTable".

attribute_length
The value of the attribute_length item indicates the length of the attribute, excluding
the initial six bytes.

local_variable_table_length
The value of the local_variable_table_length item indicates the number of entries
in the local_variable_table array.

local_variable_table[]
Each entry in the local_variable_table array indicates a range of code array offsets
within which a local variable has a value. It also indicates the index into the local variable
array of the current frame at which that local variable can be found. Each entry must contain
the following five items:

start_pc, length
The given local variable must have a value at indices into the code array in the interval
[start_pc, start_pc+length], that is, between start_pc and start_pc+length
inclusive. The value of start_pc must be a valid index into the code array of this Code
attribute and must be the index of the opcode of an instruction. Either the value of
start_pc+length must be a valid index into the code array of this Code attribute and
be the index of the opcode of an instruction, or it must be the first index beyond the end of
that code array.

name_index, descriptor_index
The value of the name_index item must be a valid index into the constant_pool table.
The constant_pool entry at that index must contain a CONSTANT_Utf8_info (§4.4.7)
structure representing a valid local variable name stored as a simple name (§2.7.1).

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must contain a
CONSTANT_Utf8_info (§4.4.7) structure representing a field descriptor (§4.3.2) encoding
the type of a local variable in the source program.

index
The given local variable must be at index in the local variable array of the current frame. If
the local variable at index is of type double or long, it occupies both index and
index+1.
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4.7.10 The Deprecated Attribute

The Deprecated attribute7 is an optional fixed-length attribute in the attributes table of
ClassFile (§4.1), field_info (§4.5), and method_info (§4.6) structures. A class, interface,
method, or field may be marked using a Deprecated attribute to indicate that the class, interface,
method, or field has been superseded. A runtime interpreter or tool that reads the class file format,
such as a compiler, can use this marking to advise the user that a superseded class, interface, method,
or field is being referred to. The presence of a Deprecated attribute does not alter the semantics of
a class or interface.

The Deprecated attribute has the following format:

Deprecated_attribute {
u2 attribute_name_index;
u4 attribute_length;
}

The items of the Deprecated_attribute structure are as follows:

attribute_name_index
The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§4.4.7) structure representing the string "Deprecated".

attribute_length
The value of the attribute_length item is zero.

4.8 Constraints on Java Virtual Machine Code

The Java virtual machine code for a method, instance initialization method (§3.9), or class or
interface initialization method (§3.9) is stored in the code array of the Code attribute of a
method_info structure of a class file. This section describes the constraints associated with the
contents of the Code_attribute structure.

4.8.1 Static Constraints

The static constraints on a class file are those defining the well-formedness of the file. With the
exception of the static constraints on the Java virtual machine code of the class file, these
constraints have been given in the previous section. The static constraints on the Java virtual machine
code in a class file specify how Java virtual machine instructions must be laid out in the code
array and what the operands of individual instructions must be.

The static constraints on the instructions in the code array are as follows:

The code array must not be empty, so the code_length item cannot have the value 0.◊ 
The value of the code_length item must be less than 65536.◊ 
The opcode of the first instruction in the code array begins at index 0.◊ 
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Only instances of the instructions documented in Section 6.4 may appear in the code array.
Instances of instructions using the reserved opcodes (§6.2) or any opcodes not documented in
this specification may not appear in the code array.

◊ 

For each instruction in the code array except the last, the index of the opcode of the next
instruction equals the index of the opcode of the current instruction plus the length of that
instruction, including all its operands. The wide instruction is treated like any other
instruction for these purposes; the opcode specifying the operation that a wide instruction is to
modify is treated as one of the operands of that wide instruction. That opcode must never be
directly reachable by the computation.

◊ 

The last byte of the last instruction in the code array must be the byte at index
code_length-1.

◊ 

The static constraints on the operands of instructions in the code array are as follows:

The target of each jump and branch instruction (jsr, jsr_w, goto, goto_w, ifeq, ifne, ifle, iflt,
ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmple, if_icmplt, if_icmpge, if_icmpgt,
if_acmpeq, if_acmpne) must be the opcode of an instruction within this method. The target of
a jump or branch instruction must never be the opcode used to specify the operation to be
modified by a wide instruction; a jump or branch target may be the wide instruction itself.

◊ 

Each target, including the default, of each tableswitch instruction must be the opcode of an
instruction within this method. Each tableswitch instruction must have a number of entries in
its jump table that is consistent with the value of its low and high jump table operands, and its
low value must be less than or equal to its high value. No target of a tableswitch instruction
may be the opcode used to specify the operation to be modified by a wide instruction; a
tableswitch target may be a wide instruction itself.

◊ 

Each target, including the default, of each lookupswitch instruction must be the opcode of an
instruction within this method. Each lookupswitch instruction must have a number of
match-offset pairs that is consistent with the value of its npairs operand. The match-offset
pairs must be sorted in increasing numerical order by signed match value. No target of a
lookupswitch instruction may be the opcode used to specify the operation to be modified by a
wide instruction; a lookupswitch target may be a wide instruction itself.

◊ 

The operand of each ldc instruction must be a valid index into the constant_pool table.
The operands of each ldc_w instruction must represent a valid index into the
constant_pool table. In both cases the constant pool entry referenced by that index must
be of type CONSTANT_Integer, CONSTANT_Float, or CONSTANT_String.

◊ 

The operands of each ldc2_w instruction must represent a valid index into the
constant_pool table. The constant pool entry referenced by that index must be of type
CONSTANT_Long or CONSTANT_Double. In addition, the subsequent constant pool index
must also be a valid index into the constant pool, and the constant pool entry at that index
must not be used.

◊ 

The operands of each getfield, putfield, getstatic, and putstatic instruction must represent a
valid index into the constant_pool table. The constant pool entry referenced by that
index must be of type CONSTANT_Fieldref.

◊ 

The indexbyte operands of each invokevirtual, invokespecial, and invokestatic instruction
must represent a valid index into the constant_pool table. The constant pool entry
referenced by that index must be of type CONSTANT_Methodref.

◊ 

Only the invokespecial instruction is allowed to invoke an instance initialization method
(§3.9). No other method whose name begins with the character '<' ('\u003c') may be
called by the method invocation instructions. In particular, the class or interface initialization
method specially named <clinit> is never called explicitly from Java virtual machine
instructions, but only implicitly by the Java virtual machine itself.

◊ 

The indexbyte operands of each invokeinterface instruction must represent a valid index into
the constant_pool table. The constant pool entry referenced by that index must be of
type CONSTANT_InterfaceMethodref. The value of the count operand of each
invokeinterface instruction must reflect the number of local variables necessary to store the

◊ 
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arguments to be passed to the interface method, as implied by the descriptor of the
CONSTANT_NameAndType_info structure referenced by the
CONSTANT_InterfaceMethodref constant pool entry. The fourth operand byte of each
invokeinterface instruction must have the value zero.
The operands of each instanceof, checkcast, new, and anewarray instruction and the
indexbyte operands of each multianewarray instruction must represent a valid index into the
constant_pool table. The constant pool entry referenced by that index must be of type
CONSTANT_Class.

◊ 

No anewarray instruction may be used to create an array of more than 255 dimensions.◊ 
No new instruction may reference a CONSTANT_Class constant_pool table entry
representing an array class. The new instruction cannot be used to create an array. The new
instruction also cannot be used to create an instance of an interface or an instance of an
abstract class.

◊ 

A multianewarray instruction must be used only to create an array of a type that has at least
as many dimensions as the value of its dimensions operand. That is, while a multianewarray
instruction is not required to create all of the dimensions of the array type referenced by its
indexbyte operands, it must not attempt to create more dimensions than are in the array type.
The dimensions operand of each multianewarray instruction must not be zero.

◊ 

The atype operand of each newarray instruction must take one of the values T_BOOLEAN
(4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9), T_INT (10),
or T_LONG (11).

◊ 

The index operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret instruction
must be a nonnegative integer no greater than max_locals-1.

◊ 

The implicit index of each iload_<n>, fload_<n>, aload_<n>, istore_<n>, fstore_<n>, and
astore_<n> instruction must be no greater than the value of max_locals-1.

◊ 

The index operand of each lload, dload, lstore, and dstore instruction must be no greater than
the value of max_locals-2.

◊ 

The implicit index of each lload_<n>, dload_<n>, lstore_<n>, and dstore_<n> instruction
must be no greater than the value of max_locals-2.

◊ 

The indexbyte operands of each wide instruction modifying an iload, fload, aload, istore,
fstore, astore, ret, or iinc instruction must represent a nonnegative integer no greater than
max_locals-1. The indexbyte operands of each wide instruction modifying an lload,
dload, lstore, or dstore instruction must represent a nonnegative integer no greater than
max_locals-2.

◊ 

4.8.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships between Java virtual
machine instructions. The structural constraints are as follows:

Each instruction must only be executed with the appropriate type and number of arguments in
the operand stack and local variable array, regardless of the execution path that leads to its
invocation. An instruction operating on values of type int is also permitted to operate on
values of type boolean, byte, char, and short. (As noted in §3.3.4 and §3.11.1, the
Java virtual machine internally converts values of types boolean, byte, char, and short
to type int.)

◊ 

If an instruction can be executed along several different execution paths, the operand stack
must have the same depth (§3.6.2) prior to the execution of the instruction, regardless of the
path taken.

◊ 

At no point during execution can the order of the local variable pair holding a value of type
long or double be reversed or the pair split up. At no point can the local variables of such
a pair be operated on individually.

◊ 

No local variable (or local variable pair, in the case of a value of type long or double) can
be accessed before it is assigned a value.

◊ 
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At no point during execution can the operand stack grow to a depth (§3.6.2) greater than that
implied by the max_stack item.

◊ 

At no point during execution can more values be popped from the operand stack than it
contains.

◊ 

Each invokespecial instruction must name an instance initialization method (§3.9), a method
in the current class, or a method in a superclass of the current class.

◊ 

When the instance initialization method (§3.9) is invoked, an uninitialized class instance must
be in an appropriate position on the operand stack. An instance initialization method must
never be invoked on an initialized class instance.

◊ 

When any instance method is invoked or when any instance variable is accessed, the class
instance that contains the instance method or instance variable must already be initialized.

◊ 

There must never be an uninitialized class instance on the operand stack or in a local variable
when any backwards branch is taken. There must never be an uninitialized class instance in a
local variable in code protected by an exception handler. However, an uninitialized class
instance may be on the operand stack in code protected by an exception handler. When an
exception is thrown, the contents of the operand stack are discarded.

◊ 

Each instance initialization method (§3.9), except for the instance initialization method
derived from the constructor of class Object, must call either another instance initialization
method of this or an instance initialization method of its direct superclass super before its
instance members are accessed. However, instance fields of this that are declared in the
current class may be assigned before calling any instance initialization method.

◊ 

The arguments to each method invocation must be method invocation compatible (§2.6.8)
with the method descriptor (§4.3.3).

◊ 

The type of every class instance that is the target of a method invocation instruction must be
assignment compatible (§2.6.7) with the class or interface type specified in the instruction.

◊ 

Each return instruction must match its method's return type. If the method returns a
boolean, byte, char, short, or int, only the ireturn instruction may be used. If the
method returns a float, long, or double, only an freturn, lreturn, or dreturn instruction,
respectively, may be used. If the method returns a reference  type, it must do so using an
areturn instruction, and the type of the returned value must be assignment compatible (§2.6.7)
with the return descriptor (§4.3.3) of the method. All instance initialization methods, class or
interface initialization methods, and methods declared to return void must use only the
return instruction.

◊ 

If getfield or putfield is used to access a protected field of a superclass, then the type of
the class instance being accessed must be the same as or a subclass of the current class. If
invokevirtual or invokespecial is used to access a protected method of a superclass, then
the type of the class instance being accessed must be the same as or a subclass of the current
class.

◊ 

The type of every class instance accessed by a getfield instruction or modified by a putfield
 instruction must be assignment compatible (§2.6.7) with the class type specified in the
instruction.

◊ 

The type of every value stored by a putfield or putstatic instruction must be compatible with
the descriptor of the field (§4.3.2) of the class instance or class being stored into. If the
descriptor type is boolean, byte, char, short, or int, then the value must be an int.
If the descriptor type is float, long, or double, then the value must be a float, long,
or double, respectively. If the descriptor type is a reference type, then the value must be
of a type that is assignment compatible (§2.6.7) with the descriptor type.

◊ 

The type of every value stored into an array of type reference by an aastore instruction
must be assignment compatible (§2.6.7) with the component type of the array.

◊ 

Each athrow instruction must throw only values that are instances of class Throwable or of
subclasses of Throwable.

◊ 

Execution never falls off the bottom of the code array.◊ 
No return address (a value of type returnAddress) may be loaded from a local variable.◊ 
The instruction following each jsr or jsr_w instruction may be returned to only by a single ret◊ 
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instruction.
No jsr or jsr_w instruction may be used to recursively call a subroutine if that subroutine is
already present in the subroutine call chain. (Subroutines can be nested when using
try-finally constructs from within a finally clause. For more information on Java
virtual machine subroutines, see §4.9.6.)

◊ 

Each instance of type returnAddress can be returned to at most once. If a ret instruction
returns to a point in the subroutine call chain above the ret instruction corresponding to a
given instance of type returnAddress, then that instance can never be used as a return
address.

◊ 

4.9 Verification of class Files

Even though Sun's compiler for the Java programming language attempts to produce only class files
that satisfy all the static constraints in the previous sections, the Java virtual machine has no guarantee
that any file it is asked to load was generated by that compiler or is properly formed. Applications
such as Sun's HotJava World Wide Web browser do not download source code, which they then
compile; these applications download already-compiled class files. The HotJava browser needs to
determine whether the class file was produced by a trustworthy compiler or by an adversary
attempting to exploit the virtual machine.

An additional problem with compile-time checking is version skew. A user may have successfully
compiled a class, say PurchaseStockOptions, to be a subclass of TradingClass. But the
definition of TradingClass might have changed since the time the class was compiled in a way
that is not compatible with preexisting binaries. Methods might have been deleted or had their return
types or modifiers changed. Fields might have changed types or changed from instance variables to
class variables. The access modifiers of a method or variable may have changed from public to
private. For a discussion of these issues, see Chapter 13, "Binary Compatibility," in the first
edition of The JavaTM Language Specification or the equivalent chapter in the second edition.

Because of these potential problems, the Java virtual machine needs to verify for itself that the
desired constraints are satisfied by the class files it attempts to incorporate. A Java virtual machine
implementation verifies that each class file satisfies the necessary constraints at linking time
(§2.17.3). Structural constraints on the Java virtual machine code may be checked using a simple
theorem prover.

Linking-time verification enhances the performance of the interpreter. Expensive checks that would
otherwise have to be performed to verify constraints at run time for each interpreted instruction can be
eliminated. The Java virtual machine can assume that these checks have already been performed. For
example, the Java virtual machine will already know the following:

There are no operand stack overflows or underflows.◊ 
All local variable uses and stores are valid.◊ 
The arguments to all the Java virtual machine instructions are of valid types.◊ 

Sun's class file verifier is independent of any compiler. It should certify all code generated by
Sun's compiler for the Java programming language; it should also certify code that other compilers
can generate, as well as code that the current compiler could not possibly generate. Any class file
that satisfies the structural criteria and static constraints will be certified by the verifier.

The class file verifier is also independent of the Java programming language. Programs written in
other languages can be compiled into the class file format, but will pass verification only if all the
same constraints are satisfied.
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4.9.1 The Verification Process

The class file verifier operates in four passes:

Pass 1:
 When a prospective class file is loaded (§2.17.2) by the Java virtual machine, the Java virtual
machine first ensures that the file has the basic format of a class file. The first four bytes must
contain the right magic number. All recognized attributes must be of the proper length. The class
file must not be truncated or have extra bytes at the end. The constant pool must not contain any
superficially unrecognizable information.

While class file verification properly occurs during class linking (§2.17.3), this check for basic
class file integrity is necessary for any interpretation of the class file contents and can be
considered to be logically part of the verification process.

Pass 2:
 When the class file is linked, the verifier performs all additional verification that can be done
without looking at the code array of the Code attribute (§4.7.3). The checks performed by this pass
include the following:

Ensuring that final classes are not subclassed and that final methods are not overridden.◊ 
Checking that every class (except Object) has a direct superclass.◊ 
Ensuring that the constant pool satisfies the documented static constraints: for example, that
each CONSTANT_Class_info structure in the constant pool contains in its name_index
item a valid constant pool index for a CONSTANT_Utf8_info structure.

◊ 

Checking that all field references and method references in the constant pool have valid
names, valid classes, and a valid type descriptor.

◊ 

Note that when it looks at field and method references, this pass does not check to make sure that the
given field or method actually exists in the given class, nor does it check that the type descriptors
given refer to real classes. It checks only that these items are well formed. More detailed checking is
delayed until passes 3 and 4.

Pass 3:
 During linking, the verifier checks the code array of the Code attribute for each method of the
class file by performing data-flow analysis on each method. The verifier ensures that at any given
point in the program, no matter what code path is taken to reach that point, the following is true:

The operand stack is always the same size and contains the same types of values.◊ 
No local variable is accessed unless it is known to contain a value of an appropriate type.◊ 
Methods are invoked with the appropriate arguments.◊ 
Fields are assigned only using values of appropriate types.◊ 
All opcodes have appropriate type arguments on the operand stack and in the local variable
array.

◊ 

For further information on this pass, see Section 4.9.2, "The Bytecode Verifier."

Pass 4:
For efficiency reasons, certain tests that could in principle be performed in Pass 3 are delayed until the
first time the code for the method is actually invoked. In so doing, Pass 3 of the verifier avoids
loading class files unless it has to.

For example, if a method invokes another method that returns an instance of class A, and that
instance is assigned only to a field of the same type, the verifier does not bother to check if the class A
actually exists. However, if it is assigned to a field of the type B, the definitions of both A and B must
be loaded in to ensure that A is a subclass of B.
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Pass 4 is a virtual pass whose checking is done by the appropriate Java virtual machine instructions.
The first time an instruction that references a type is executed, the executing instruction does the
following:

Loads in the definition of the referenced type if it has not already been loaded.◊ 
Checks that the currently executing type is allowed to reference the type.◊ 

The first time an instruction invokes a method, or accesses or modifies a field, the executing
instruction does the following:

Ensures that the referenced method or field exists in the given class.◊ 
Checks that the referenced method or field has the indicated descriptor.◊ 
Checks that the currently executing method has access to the referenced method or field.◊ 

The Java virtual machine does not have to check the type of the object on the operand stack. That
check has already been done by Pass 3. Errors that are detected in Pass 4 cause instances of subclasses
of LinkageError to be thrown.

A Java virtual machine implementation is allowed to perform any or all of the Pass 4 steps as part of
Pass 3; see 2.17.1, "Virtual Machine Start-up" for an example and more discussion.

In one of Sun's Java virtual machine implementations, after the verification has been performed, the
instruction in the Java virtual machine code is replaced with an alternative form of the instruction.
This alternative instruction indicates that the verification needed by this instruction has taken place
and does not need to be performed again. Subsequent invocations of the method will thus be faster. It
is illegal for these alternative instruction forms to appear in class files, and they should never be
encountered by the verifier.

4.9.2 The Bytecode Verifier

As indicated earlier, Pass 3 of the verification process is the most complex of the four passes of
class file verification. This section looks at the verification of Java virtual machine code in Pass 3
in more detail.

The code for each method is verified independently. First, the bytes that make up the code are broken
up into a sequence of instructions, and the index into the code array of the start of each instruction is
placed in an array. The verifier then goes through the code a second time and parses the instructions.
During this pass a data structure is built to hold information about each Java virtual machine
instruction in the method. The operands, if any, of each instruction are checked to make sure they are
valid. For instance:

Branches must be within the bounds of the code array for the method.◊ 
The targets of all control-flow instructions are each the start of an instruction. In the case of a
wide instruction, the wide opcode is considered the start of the instruction, and the opcode
giving the operation modified by that wide instruction is not considered to start an instruction.
Branches into the middle of an instruction are disallowed.

◊ 

No instruction can access or modify a local variable at an index greater than or equal to the
number of local variables that its method indicates it allocates.

◊ 

All references to the constant pool must be to an entry of the appropriate type. For example:
the instruction ldc can be used only for data of type int or float or for instances of class
String; the instruction getfield must reference a field.

◊ 

The code does not end in the middle of an instruction.◊ 
Execution cannot fall off the end of the code.◊ 
For each exception handler, the starting and ending point of code protected by the handler
must be at the beginning of an instruction or, in the case of the ending point, immediately past

◊ 
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the end of the code. The starting point must be before the ending point. The exception handler
code must start at a valid instruction, and it may not start at an opcode being modified by the
wide instruction.

For each instruction of the method, the verifier records the contents of the operand stack and the
contents of the local variable array prior to the execution of that instruction. For the operand stack, it
needs to know the stack height and the type of each value on it. For each local variable, it needs to
know either the type of the contents of that local variable or that the local variable contains an
unusable or unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (e.g., byte, short, char) when determining the value types
on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the method, the local variables
that represent parameters initially contain values of the types indicated by the method's type
descriptor; the operand stack is empty. All other local variables contain an illegal value. For the other
instructions, which have not been examined yet, no information is available regarding the operand
stack or local variables.

Finally, the data-flow analyzer is run. For each instruction, a "changed" bit indicates whether this
instruction needs to be looked at. Initially, the "changed" bit is set only for the first instruction. The
data-flow analyzer executes the following loop:

Select a virtual machine instruction whose "changed" bit is set. If no instruction remains
whose "changed" bit is set, the method has successfully been verified. Otherwise, turn off the
"changed" bit of the selected instruction.

1. 

Model the effect of the instruction on the operand stack and local variable array by doing the
following:

If the instruction uses values from the operand stack, ensure that there are a sufficient
number of values on the stack and that the top values on the stack are of an
appropriate type. Otherwise, verification fails.

⋅ 

If the instruction uses a local variable, ensure that the specified local variable contains
a value of the appropriate type. Otherwise, verification fails.

⋅ 

If the instruction pushes values onto the operand stack, ensure that there is sufficient
room on the operand stack for the new values. Add the indicated types to the top of
the modeled operand stack.

⋅ 

If the instruction modifies a local variable, record that the local variable now contains
the new type.

⋅ 

2. 

Determine the instructions that can follow the current instruction. Successor instructions can
be one of the following:

The next instruction, if the current instruction is not an unconditional control transfer
instruction (for instance goto, return, or athrow). Verification fails if it is possible to
"fall off" the last instruction of the method.

⋅ 

The target(s) of a conditional or unconditional branch or switch.⋅ 
Any exception handlers for this instruction.⋅ 

3. 

Merge the state of the operand stack and local variable array at the end of the execution of the
current instruction into each of the successor instructions. In the special case of control
transfer to an exception handler, the operand stack is set to contain a single object of the
exception type indicated by the exception handler information.

If this is the first time the successor instruction has been visited, record that the
operand stack and local variable values calculated in steps 2 and 3 are the state of the
operand stack and local variable array prior to executing the successor instruction. Set

⋅ 

4. 
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the "changed" bit for the successor instruction.
If the successor instruction has been seen before, merge the operand stack and local
variable values calculated in steps 2 and 3 into the values already there. Set the
"changed" bit if there is any modification to the values.

⋅ 

Continue at step 1.5. 
To merge two operand stacks, the number of values on each stack must be identical. The types of
values on the stacks must also be identical, except that differently typed reference values may
appear at corresponding places on the two stacks. In this case, the merged operand stack contains a
reference to an instance of the first common superclass of the two types. Such a reference type
always exists because the type Object is a superclass of all class and interface types. If the operand
stacks cannot be merged, verification of the method fails.

To merge two local variable array states, corresponding pairs of local variables are compared. If the
two types are not identical, then unless both contain reference values, the verifier records that the
local variable contains an unusable value. If both of the pair of local variables contain reference
values, the merged state contains a reference to an instance of the first common superclass of the
two types.

If the data-flow analyzer runs on a method without reporting a verification failure, then the method
has been successfully verified by Pass 3 of the class file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now examine each of these
in more detail.

4.9.3 Values of Types long and double

Values of the long and double types are treated specially by the verification process.

Whenever a value of type long or double is moved into a local variable at index n, index n  +  1
is specially marked to indicate that it has been reserved by the value at index n and may not be used
as a local variable index. Any value previously at index n  +  1 becomes unusable.

Whenever a value is moved to a local variable at index n, the index n  -  1 is examined to see if it is
the index of a value of type long or double. If so, the local variable at index n  -  1 is changed to
indicate that it now contains an unusable value. Since the local variable at index n has been
overwritten, the local variable at index n  -  1 cannot represent a value of type long or double.

Dealing with values of types long or double on the operand stack is simpler; the verifier treats
them as single values on the stack. For example, the verification code for the dadd opcode (add two
double values) checks that the top two items on the stack are both of type double. When
calculating operand stack length, values of type long and double have length two.

Untyped instructions that manipulate the operand stack must treat values of type double and long
as atomic (indivisible). For example, the verifier reports a failure if the top value on the stack is a
double and it encounters an instruction such as pop or dup. The instructions pop2 or dup2 must be
used instead.

4.9.4 Instance Initialization Methods and Newly Created Objects

Creating a new class instance is a multistep process. The statement
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...
new myClass(i, j, k);
...

can be implemented by the following:

    ...
    new #1                      // Allocate uninitialized space for myClass
    dup                         // Duplicate object on the operand stack
    iload_1                     // Push i
    iload_2                     // Push j
    iload_3                     // Push k
    invokespecial #5            // Invoke myClass.<init>
    ...

This instruction sequence leaves the newly created and initialized object on top of the operand stack.
(Additional examples of compilation to the instruction set of the Java virtual machine are given in
Chapter 7, "Compiling for the Java Virtual Machine.")

The instance initialization method (§3.9) for class myClass sees the new uninitialized object as its
this argument in local variable 0. Before that method invokes another instance initialization method
of myClass or its direct superclass on this, the only operation the method can perform on this is
assigning fields declared within myClass.

When doing dataflow analysis on instance methods, the verifier initializes local variable 0 to contain
an object of the current class, or, for instance initialization methods, local variable 0 contains a
special type indicating an uninitialized object. After an appropriate instance initialization method is
invoked (from the current class or the current superclass) on this object, all occurrences of this special
type on the verifier's model of the operand stack and in the local variable array are replaced by the
current class type. The verifier rejects code that uses the new object before it has been initialized or
that initializes the object more than once. In addition, it ensures that every normal return of the
method has invoked an instance initialization method either in the class of this method or in the direct
superclass.

Similarly, a special type is created and pushed on the verifier's model of the operand stack as the
result of the Java virtual machine instruction new. The special type indicates the instruction by which
the class instance was created and the type of the uninitialized class instance created. When an
instance initialization method is invoked on that class instance, all occurrences of the special type are
replaced by the intended type of the class instance. This change in type may propagate to subsequent
instructions as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as there may be multiple
not-yet-initialized instances of a class in existence on the operand stack at one time. For example, the
Java virtual machine instruction sequence that implements

new InputStream(new Foo(), new  InputStream("foo"))

may have two uninitialized instances of InputStream on the operand stack at once. When an
instance initialization method is invoked on a class instance, only those occurrences of the special
type on the operand stack or in the local variable array that are the same object as the class instance
are replaced.
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A valid instruction sequence must not have an uninitialized object on the operand stack or in a local
variable during a backwards branch, or in a local variable in code protected by an exception handler
or a finally clause. Otherwise, a devious piece of code might fool the verifier into thinking it had
initialized a class instance when it had, in fact, initialized a class instance created in a previous pass
through a loop.

4.9.5 Exception Handlers

Java virtual machine code produced by Sun's compiler for the Java programming language always
generates exception handlers such that:

Either the ranges of instructions protected by two different exception handlers always are
completely disjoint, or else one is a subrange of the other. There is never a partial overlap of
ranges.

◊ 

The handler for an exception will never be inside the code that is being protected.◊ 
The only entry to an exception handler is through an exception. It is impossible to fall through
or "goto" the exception handler.

◊ 

These restrictions are not enforced by the class file verifier since they do not pose a threat to the
integrity of the Java virtual machine. As long as every nonexceptional path to the exception handler
causes there to be a single object on the operand stack, and as long as all other criteria of the verifier
are met, the verifier will pass the code.

4.9.6 Exceptions and finally

Given the code fragment

...
try {
   startFaucet();
   waterLawn();
} finally {
   stopFaucet();
}
...

the Java programming language guarantees that stopFaucet is invoked (the faucet is turned off)
whether we finish watering the lawn or whether an exception occurs while starting the faucet or
watering the lawn. That is, the finally clause is guaranteed to be executed whether its try clause
completes normally or completes abruptly by throwing an exception.

To implement the try-finally construct, Sun's compiler for the Java programming language uses
the exception-handling facilities together with two special instructions: jsr ("jump to subroutine") and
ret ("return from subroutine"). The finally clause is compiled as a subroutine within the Java
virtual machine code for its method, much like the code for an exception handler. When a jsr
instruction that invokes the subroutine is executed, it pushes its return address, the address of the
instruction after the jsr that is being executed, onto the operand stack as a value of type
returnAddress. The code for the subroutine stores the return address in a local variable. At the
end of the subroutine, a ret instruction fetches the return address from the local variable and transfers
control to the instruction at the return address.

Control can be transferred to the finally clause (the finally subroutine can be invoked) in
several different ways. If the try clause completes normally, the finally subroutine is invoked via
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a jsr instruction before evaluating the next expression. A break or continue inside the try clause
that transfers control outside the try clause executes a jsr to the code for the finally clause first.
If the try clause executes a return, the compiled code does the following:

Saves the return value (if any) in a local variable. 1. 
Executes a jsr to the code for the finally clause. 2. 
Upon return from the finally clause, returns the value saved in the local variable.3. 

The compiler sets up a special exception handler, which catches any exception thrown by the try
clause. If an exception is thrown in the try clause, this exception handler does the following:

Saves the exception in a local variable. 1. 
Executes a jsr to the finally clause. 2. 
Upon return from the finally clause, rethrows the exception.3. 

For more information about the implementation of the try-finally construct, see Section 7.13,
"Compiling finally."

The code for the finally clause presents a special problem to the verifier. Usually, if a particular
instruction can be reached via multiple paths and a particular local variable contains incompatible
values through those multiple paths, then the local variable becomes unusable. However, a finally
clause might be called from several different places, yielding several different circumstances:

The invocation from the exception handler may have a certain local variable that contains an
exception.

◊ 

The invocation to implement return may have some local variable that contains the return
value.

◊ 

The invocation from the bottom of the try clause may have an indeterminate value in that
same local variable.

◊ 

The code for the finally clause itself might pass verification, but after completing the updating all
the successors of the ret instruction, the verifier would note that the local variable that the exception
handler expects to hold an exception, or that the return code expects to hold a return value, now
contains an indeterminate value.

Verifying code that contains a finally clause is complicated. The basic idea is the following:

Each instruction keeps track of the list of jsr targets needed to reach that instruction. For most
code, this list is empty. For instructions inside code for the finally clause, it is of length
one. For multiply nested finally code (extremely rare!), it may be longer than one.

◊ 

For each instruction and each jsr needed to reach that instruction, a bit vector is maintained of
all local variables accessed or modified since the execution of the jsr instruction.

◊ 

When executing the ret instruction, which implements a return from a subroutine, there must
be only one possible subroutine from which the instruction can be returning. Two different
subroutines cannot "merge" their execution to a single ret instruction.

◊ 

To perform the data-flow analysis on a ret instruction, a special procedure is used. Since the
verifier knows the subroutine from which the instruction must be returning, it can find all the
jsr instructions that call the subroutine and merge the state of the operand stack and local
variable array at the time of the ret instruction into the operand stack and local variable array
of the instructions following the jsr. Merging uses a special set of values for local variables:

For any local variable that the bit vector (constructed above) indicates has been
accessed or modified by the subroutine, use the type of the local variable at the time
of the ret.

⋅ 

For other local variables, use the type of the local variable before the jsr instruction.⋅ 

◊ 
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4.10 Limitations of the Java Virtual Machine

The following limitations of the Java virtual machine are implicit in the class file format:

The per-class or per-interface constant pool is limited to 65535 entries by the 16-bit
constant_pool_count field of the ClassFile structure (§4.1). This acts as an
internal limit on the total complexity of a single class or interface.

◊ 

The amount of code per non-native, non-abstract method is limited to 65536 bytes by
the sizes of the indices in the exception_table of the Code attribute (§4.7.3), in the
LineNumberTable attribute (§4.7.8), and in the LocalVariableTable attribute
(§4.7.9).

◊ 

The greatest number of local variables in the local variables array of a frame created upon
invocation of a method is limited to 65535 by the size of the max_locals item of the Code
attribute (§4.7.3) giving the code of the method. Note that values of type long and double
are each considered to reserve two local variables and contribute two units toward the
max_locals value, so use of local variables of those types further reduces this limit.

◊ 

The number of fields that may be declared by a class or interface is limited to 65535 by the
size of the fields_count item of the ClassFile structure (§4.1). Note that the value of
the fields_count item of the ClassFile structure does not include fields that are
inherited from superclasses or superinterfaces.

◊ 

The number of methods that may be declared by a class or interface is limited to 65535 by the
size of the methods_count item of the ClassFile structure (§4.1). Note that the value
of the methods_count item of the ClassFile structure does not include methods that
are inherited from superclasses or superinterfaces.

◊ 

The number of direct superinterfaces of a class or interface is limited to 65535 by the size of
the interfaces_count item of the ClassFile structure (§4.1).

◊ 

The size of an operand stack in a frame (§3.6) is limited to 65535 values by the max_stack
field of the Code_attribute structure (§4.7.3). Note that values of type long and
double are each considered to contribute two units toward the max_stack value, so use of
values of these types on the operand stack further reduces this limit.

◊ 

The number of local variables in a frame (§3.6) is limited to 65535 by the max_locals
field of the Code_attribute structure (§4.7.3) and the 16-bit local variable indexing of
the Java virtual machine instruction set.

◊ 

The number of dimensions in an array is limited to 255 by the size of the dimensions opcode
of the multianewarray instruction and by the constraints imposed on the multianewarray,
anewarray, and newarray instructions by §4.8.2.

◊ 

The number of method parameters is limited to 255 by the definition of a method descriptor
(§4.3.3), where the limit includes one unit for this in the case of instance or interface
method invocations. Note that a method descriptor is defined in terms of a notion of method
parameter length in which a parameter of type long or double contributes two units to the
length, so parameters of these types further reduce the limit.

◊ 

The length of field and method names, field and method descriptors, and other constant string
values is limited to 65535 characters by the 16-bit unsigned length item of the
CONSTANT_Utf8_info structure (§4.4.7). Note that the limit is on the number of bytes in
the encoding and not on the number of encoded characters. UTF-8 encodes some characters
using two or three bytes. Thus, strings incorporating multibyte characters are further
constrained.

◊ 

1 The Java virtual machine implementation of Sun's JDK release 1.0.2 supports class file format
versions 45.0 through 45.3 inclusive. Sun's JDK releases 1.1.X can support class file formats of
versions in the range 45.0 through 45.65535 inclusive. Implementations of version 1.2 of the Java 2
platform can support class file formats of versions in the range 45.0 through 46.0 inclusive.

2 In retrospect, making 8-byte constants take two constant pool entries was a poor choice.
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3 The first edition of The JavaTM Language Specification required that "com" be in uppercase in this
example. The second edition will reverse that convention and use lowercase.

4 The fact that end_pc is exclusive is a historical mistake in the design of the Java virtual machine: if
the Java virtual machine code for a method is exactly 65535 bytes long and ends with an instruction
that is 1 byte long, then that instruction cannot be protected by an exception handler. A compiler
writer can work around this bug by limiting the maximum size of the generated Java virtual machine
code for any method, instance initialization method, or static initializer (the size of any code array)
to 65534 bytes.

5 The InnerClasses attribute was introduced in JDK release 1.1 to support nested classes and
interfaces.

6 The Synthetic attribute was introduced in JDK release 1.1 to support nested classes and
interfaces.

7 The Deprecated attribute was introduced in JDK release 1.1 to support the @deprecated tag
in documentation comments.
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CHAPTER 5

Loading, Linking, and Initializing
The Java virtual machine dynamically loads (§2.17.2), links (§2.17.3), and initializes (§2.17.4) classes and
interfaces. Loading is the process of finding the binary representation of a class or interface type with a
particular name and creating a class or interface from that binary representation. Linking is the process of
taking a class or interface and combining it into the runtime state of the Java virtual machine so that it can be
executed. Initialization of a class or interface consists of executing the class or interface initialization method
<clinit> (§3.9).

In this chapter, Section 5.1 describes how the Java virtual machine derives symbolic references from the
binary representation of a class or interface. Section 5.2 explains how the processes of loading, linking, and
initialization are first initiated by the Java virtual machine. Section 5.3 specifies how binary representations of
classes and interfaces are loaded by class loaders and how classes and interfaces are created. Linking is
described in Section 5.4. Section 5.5 details how classes and interfaces are initialized. Finally, Section 5.6
introduces the notion of binding native methods.

5.1 The Runtime Constant Pool

The Java virtual machine maintains a per-type constant pool (§3.5.5), a runtime data structure that serves
many of the purposes of the symbol table of a conventional programming language implementation.

The constant_pool table (§4.4) in the binary representation of a class or interface is used to construct the
runtime constant pool upon class or interface creation (§5.3). All references in the runtime constant pool are
initially symbolic. The symbolic references in the runtime constant pool are derived from structures in the
binary representation of the class or interface as follows:

A symbolic reference to a class or interface is derived from a CONSTANT_Class_info structure
(§4.4.1) in the binary representation of a class or interface. Such a reference gives the name of the
class or interface in the form returned by the Class.getName method, that is:

For a nonarray class or an interface, the name is the fully qualified name of the class or
interface.

♦ 

For an array class of M dimensions, the name begins with M occurrences of the ASCII "["
character followed by a representation of the element type:

If the element type is a primitive type, it is represented by the corresponding field
descriptor (§4.3.2).

◊ 

Otherwise, if the element type is a reference type, it is represented by the ASCII "L"
character followed by the fully qualified name of the element type followed by the
ASCII ";" character.

◊ 

♦ 

• 

Whenever this chapter refers to the name of a class or interface, it should be understood to be in the
form returned by the Class.getName method.

• 

A symbolic reference to a field of a class (§2.9) or an interface (§2.13.3.1) is derived from a• 
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CONSTANT_Fieldref_info structure (§4.4.2) in the binary representation of a class or interface.
Such a reference gives the name and descriptor of the field, as well as a symbolic reference to the
class or interface in which the field is to be found.
A symbolic reference to a method of a class (§2.10) is derived from a
CONSTANT_Methodref_info structure (§4.4.2) in the binary representation of a class or
interface. Such a reference gives the name and descriptor of the method, as well as a symbolic
reference to the class in which the method is to be found.

• 

A symbolic reference to a method of an interface (§2.13) is derived from a
CONSTANT_InterfaceMethodref_info structure (§4.4.2) in the binary representation of a
class or interface. Such a reference gives the name and descriptor of the interface method, as well as a
symbolic reference to the interface in which the method is to be found.

• 

In addition, certain nonreference runtime values are derived from items found in the constant_pool
table:

A string literal (§2.3) is derived from a CONSTANT_String_info structure (§4.4.3) in the binary
representation of a class or interface. The CONSTANT_String_info structure gives the sequence
of Unicode characters constituting the string literal.

• 

The Java programming language requires that identical string literals (that is, literals that contain the
same sequence of characters) must refer to the same instance of class String. In addition, if the
method String.intern is called on any string, the result is a reference to the same class instance
that would be returned if that string appeared as a literal. Thus,

("a" + "b" + "c").intern() == "abc"

must have the value true.

• 

To derive a string literal, the Java virtual machine examines the sequence of characters given by the
CONSTANT_String_info structure.

If the method String.intern has previously been called on an instance of class String
containing a sequence of Unicode characters identical to that given by the
CONSTANT_String_info structure, then the result of string literal derivation is a
reference to that same instance of class String.

♦ 

Otherwise, a new instance of class String is created containing the sequence of Unicode
characters given by the CONSTANT_String_info structure; that class instance is the
result of string literal derivation. Finally, the intern method of the new String instance is
invoked.

♦ 

• 

Runtime constant values are derived from CONSTANT_Integer_info,
CONSTANT_Float_info, CONSTANT_Long_info, or CONSTANT_Double_info structures
(§4.4.4, §4.4.5) in the binary representation of a class or interface. Note that
CONSTANT_Float_info structures represent values in IEEE 754 single format and
CONSTANT_Double_info structures represent values in IEEE 754 double format (§4.4.4, §4.4.5).
The runtime constant values derived from these structures must thus be values that can be represented
using IEEE 754 single and double formats, respectively.

• 

The remaining structures in the constant_pool table of the binary representation of a class or interface,
the CONSTANT_NameAndType_info (§4.4.6) and CONSTANT_Utf8_info (§4.4.7) structures are only
used indirectly when deriving symbolic references to classes, interfaces, methods, and fields, and when
deriving string literals.
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5.2 Virtual Machine Start-up

The Java virtual machine starts up by creating an initial class, which is specified in an
implementation-dependent manner, using the bootstrap class loader (§5.3.1). The Java virtual machine then
links the initial class, initializes it, and invokes its public class method void main(String[]). The
invocation of this method drives all further execution. Execution of the Java virtual machine instructions
constituting the main method may cause linking (and consequently creation) of additional classes and
interfaces, as well as invocation of additional methods.

In some implementations of the Java virtual machine the initial class could be provided as a command line
argument, as in JDK releases 1.0 and 1.1. Alternatively, the initial class could be provided by the
implementation. In this case the initial class might set up a class loader that would in turn load an application,
as in the Java 2 SDK, Standard Edition, v1.2. Other choices of the initial class are possible so long as they are
consistent with the specification given in the previous paragraph.

5.3 Creation and Loading

Creation of a class or interface C denoted by the name N consists of the construction in the method area of
the Java virtual machine (§3.5.4) of an implementation-specific internal representation of C. Class or interface
creation is triggered by another class or interface D, which references C through its runtime constant pool.
Class or interface creation may also be triggered by D invoking methods in certain Java class libraries (§3.12)
such as reflection.

If C is not an array class, it is created by loading a binary representation of C (see Chapter 4, "The class File
Format") using a class loader (§2.17.2). Array classes do not have an external binary representation; they are
created by the Java virtual machine rather than by a class loader.

There are two types of class loaders: user-defined class loaders and the bootstrap class loader supplied by the
Java virtual machine. Every user-defined class loader is an instance of a subclass of the abstract class
ClassLoader. Applications employ class loaders in order to extend the manner in which the Java virtual
machine dynamically loads and thereby creates classes. User-defined class loaders can be used to create
classes that originate from user-defined sources. For example, a class could be downloaded across a network,
generated on the fly, or extracted from an encrypted file.

A class loader L may create C by defining it directly or by delegating to another class loader. If L creates C
directly, we say that L defines C or, equivalently, that L is the defining loader of C.

When one class loader delegates to another class loader, the loader that initiates the loading is not necessarily
the same loader that completes the loading and defines the class. If L creates C, either by defining it directly
or by delegation, we say that L initiates loading of C or, equivalently, that L is an initiating loader of C.

At run time, a class or interface is determined not by its name alone, but by a pair: its fully qualified name
and its defining class loader. Each such class or interface belongs to a single runtime package. The runtime
package of a class or interface is determined by the package name and defining class loader of the class or
interface.

The Java virtual machine uses one of three procedures to create class or interface C  denoted by N:

If N denotes a nonarray class or an interface, one of the two following methods is used to load and
thereby create C  :

• 
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If D was defined by the bootstrap class loader, then the bootstrap class loader initiates loading
of C (§5.3.1).

♦ 

If D was defined by a user-defined class loader, then that same user-defined class loader
initiates loading of C (§5.3.2).

♦ 

Otherwise N denotes an array class. An array class is created directly by the Java virtual machine
(§5.3.3), not by a class loader. However, the defining class loader of D is used in the process of
creating array class C.

• 

We will sometimes represent a class or interface using the notation <N, Ld  >, where N denotes the name of
the class or interface and Ld denotes the defining loader of the class or interface. We will also represent a class
or interface using the notation NLi, where N denotes the name of the class or interface and Li denotes an
initiating loader of the class or interface.

5.3.1 Loading Using the Bootstrap Class Loader

The following steps are used to load and thereby create the nonarray class or interface C denoted by N  using
the bootstrap class loader.

First, the Java virtual machine determines whether the bootstrap class loader has already been recorded as an
initiating loader of a class or interface denoted by N. If so, this class or interface is C, and no class creation is
necessary.

Otherwise, the Java virtual machine performs one of the following two operations in order to load C:

The Java virtual machine searches for a purported representation of C in a platform-dependent
manner. Note that there is no guarantee that a purported representation found is valid or is a
representation of C.

Typically, a class or interface will be represented using a file in a hierarchical file system. The name
of the class or interface will usually be encoded in the pathname of the file.

This phase of loading must detect the following error:

If no purported representation of C  is found, loading throws an instance of
NoClassDefFoundError or an instance of one of its subclasses.

♦ 

Then the Java virtual machine attempts to derive a class denoted by N  using the bootstrap class
loader from the purported representation using the algorithm found in Section 5.3.5. That class is C.

1. 

The bootstrap class loader can delegate the loading of C to some user-defined class loader L  by
passing N  to an invocation of a loadClass method on L. The result of the invocation is C. The
Java virtual machine then records that the bootstrap loader is an initiating loader of C (§5.3.4).

2. 

5.3.2 Loading Using a User-defined Class Loader

The following steps are used to load and thereby create the nonarray class or interface C denoted by N  
 using a user-defined class loader L.

First, the Java virtual machine determines whether L has already been recorded as an initiating loader of a
class or interface denoted by N. If so, this class or interface is C, and no class creation is necessary.

Otherwise the Java virtual machine invokes loadClass(N  ) on L.1 The value returned by the invocation
is the created class or interface C. The Java virtual machine then records that L is an initiating loader of C
(§5.3.4). The remainder of this section describes this process in more detail.
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When the loadClass method of the class loader L is invoked with the name N of a class or interface C to
be loaded, L must perform one of the following two operations in order to load C  :

The class loader L can create an array of bytes representing C as the bytes of a ClassFile structure
(§4.1); it then must invoke the method defineClass of class ClassLoader. Invoking
defineClass causes the Java virtual machine to derive a class or interface denoted by N    using L
from the array of bytes using the algorithm found in Section 5.3.5.

1. 

The class loader L can delegate the loading of C to some other class loader L'. This is accomplished
by passing the argument N  directly or indirectly to an invocation of a method on L' (typically the
loadClass method). The result of the invocation is C.

2. 

5.3.3 Creating Array Classes

The following steps are used to create the array class C denoted by N using class loader L. Class loader L
may be either the bootstrap class loader or a user-defined class loader.

If L has already been recorded as an initiating loader of an array class with the same component type as N,
that class is C, and no array class creation is necessary. Otherwise, the following steps are performed to create
C:

If the component type is a reference type, the algorithm of this section (§5.3) is applied recursively
using class loader L in order to load and thereby create the component type of C.

1. 

The Java virtual machine creates a new array class with the indicated component type and number of
dimensions. If the component type is a reference type, C is marked as having been defined by the
defining class loader of the component type. Otherwise, C is marked as having been defined by the
bootstrap class loader. In any case, the Java virtual machine then records that L is an initiating loader
for C (§5.3.4). If the component type is a reference type, the accessibility of the array class is
determined by the accessibility of its component type. Otherwise, the accessibility of the array class is
public.

2. 

5.3.4 Loading Constraints

Ensuring type safe linkage in the presence of class loaders requires special care. It is possible that when two
different class loaders initiate loading of a class or interface denoted by N, the name N may denote a different
class or interface in each loader.

When a class or interface C = <N1, L1> makes a symbolic reference to a field or method of another class or
interface D = <N2, L2> , the symbolic reference includes a descriptor specifying the type of the field, or the
return and argument types of the method. It is essential that any type name N mentioned in the field or method
descriptor denote the same class or interface when loaded by L1 and when loaded by L2.

To ensure this, the Java virtual machine imposes loading constraints of the form NL1 = NL2 during
preparation (§5.4.2) and resolution (§5.4.3). To enforce these constraints, the Java virtual machine will, at
certain prescribed times (see §5.3.1, §5.3.2, §5.3.3, and §5.3.5), record that a particular loader is an initiating
loader of a particular class. After recording that a loader is an initiating loader of a class, the Java virtual
machine must immediately check to see if any loading constraints are violated. If so, the record is retracted,
the Java virtual machine throws a LinkageError, and the loading operation that caused the recording to
take place fails.
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Similarly, after imposing a loading constraint (see §5.4.2, §5.4.3.2, §5.4.3.3, and §5.4.3.4), the Java virtual
machine must immediately check to see if any loading constraints are violated. If so, the newly imposed
loading constraint is retracted, the Java virtual machine throws a LinkageError, and the operation that
caused the constraint to be imposed (either resolution or preparation, as the case may be) fails.

The situations described here are the only times at which the Java virtual machine checks whether any
loading constraints have been violated. A loading constraint is violated if, and only if, all the following four
conditions hold:

There exists a loader L such that L has been recorded by the Java virtual machine as an initiating
loader of a class C named N.

• 

There exists a loader L' such that L' has been recorded by the Java virtual machine as an initiating
loader of a class C' named N.

• 

The equivalence relation defined by the (transitive closure of the) set of imposed constraints implies
N L = N L'.

• 

C  C  '.• 

A full discussion of class loaders and type safety is beyond the scope of this specification. For a more
comprehensive discussion, readers are referred to Dynamic Class Loading in the Java Virtual Machine by
Sheng Liang and Gilad Bracha (Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications).

5.3.5 Deriving a Class from a class File Representation

The following steps are used to derive the nonarray class or interface C denoted by N  using loader L from a
purported representation in class file format.

First, the Java virtual machine determines whether it has already recorded that L is an initiating loader
of a class or interface denoted by N. If so, this creation attempt is invalid and loading throws a
LinkageError.

1. 

Otherwise, the Java virtual machine attempts to parse the purported representation. However, the
purported representation may not in fact be a valid representation of C.

This phase of loading must detect the following errors:

If the purported representation is not in class file format (§4.1, pass 1 of §4.9.1), loading
throws an instance of ClassFormatError.

♦ 

Otherwise, if the purported representation is not of a supported major or minor version (§4.1),
loading throws an instance of UnsupportedClassVersionError.2

♦ 

Otherwise, if the purported representation does not actually represent a class named N,
loading throws an instance of NoClassDefFoundError or an instance of one of its
subclasses.

♦ 

2. 

If C has a direct superclass, the symbolic reference from C to its direct superclass is resolved using
the algorithm of Section 5.4.3.1. Note that if C is an interface it must have Object as its direct
superclass, which must already have been loaded. Only Object has no direct superclass.

Any exceptions that can be thrown due to class or interface resolution can be thrown as a result of this
phase of loading. In addition, this phase of loading must detect the following errors:

If the class or interface named as the direct superclass of C is in fact an interface, loading
throws an IncompatibleClassChangeError.

♦ 

3. 
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Otherwise, if any of the superclasses of C is C itself, loading throws a
ClassCircularityError.

♦ 

If C has any direct superinterfaces, the symbolic references from C to its direct superinterfaces are
resolved using the algorithm of Section 5.4.3.1.

Any exceptions that can be thrown due to class or interface resolution can be thrown as a result of this
phase of loading. In addition, this phase of loading must detect the following errors:

If any of the classes or interfaces named as direct superinterfaces of C is not in fact an
interface, loading throws an IncompatibleClassChangeError.

♦ 

Otherwise, if any of the superinterfaces of C is C itself, loading throws a
ClassCircularityError.

♦ 

4. 

The Java virtual machine marks C as having L as its defining class loader and records that L is an
initiating loader of C (§5.3.4).

5. 

5.4 Linking

Linking a class or interface (§2.17.3) involves verifying and preparing that class or interface, its direct
superclass, its direct superinterfaces, and its element type (if it is an array type), if necessary. Resolution of
symbolic references in the class or interface is an optional part of linking.

5.4.1 Verification

The representation of a class or interface is verified (§4.9) to ensure that its binary representation is
structurally valid (passes 2 and 3 of §4.9.1). Verification may cause additional classes and interfaces to be
loaded (§5.3) but need not cause them to be prepared or verified.

Verification must detect the following error:

If the representation of the class or interface does not satisfy the static or structural constraints listed
in Section 4.8, "Constraints on Java Virtual Machine Code," verification throws a VerifyError.

• 

A class or interface must be successfully verified before it is initialized. Any attempt to initialize a class or
interface that has not been successfully verified must be preceded by verification. Repeated verification of a
class or interface that the Java virtual machine has previously unsuccessfully attempted to verify always fails
with the same error that was thrown as a result of the initial verification attempt.

5.4.2 Preparation

Preparation involves creating the static fields for the class or interface and initializing those fields to their
standard default values (§2.5.1). Preparation should not be confused with the execution of static initializers
(§2.11); unlike execution of static initializers, preparation does not require the execution of any Java virtual
machine code.

During preparation of a class or interface C, the Java virtual machine also imposes loading constraints
(§5.3.4). Let L1 be the defining loader of C. For each method m declared in C that overrides a method
declared in a superclass or superinterface , the Java virtual machine imposes the following loading constraints:
Let T0 be the name of the type returned by m, and let T1, ..., Tn be the names of the argument types of m. Then
Ti

L1=Ti
L2 for i = 0 to n (§5.3.4).
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Preparation may occur at any time following creation but must be completed prior to initialization.

5.4.3 Resolution

The process of dynamically determining concrete values from symbolic references in the runtime constant
pool is known as resolution.

Resolution can be attempted on a symbolic reference that has already been resolved. An attempt to resolve a
symbolic reference that has already successfully been resolved always succeeds trivially and always results in
the same entity produced by the initial resolution of that reference.

Subsequent attempts to resolve a symbolic reference that the Java virtual machine has previously
unsuccessfully attempted to resolve always fails with the same error that was thrown as a result of the initial
resolution attempt.

Certain Java virtual machine instructions require specific linking checks when resolving symbolic references.
For instance, in order for a getfield instruction to successfully resolve the symbolic reference to the field on
which it operates it must complete the field resolution steps given in Section 5.4.3.2. In addition, it must also
check that the field is not static. If it is a static field, a linking exception must be thrown.

Linking exceptions generated by checks that are specific to the execution of a particular Java virtual machine
instruction are given in the description of that instruction and are not covered in this general discussion of
resolution. Note that such exceptions, although described as part of the execution of Java virtual machine
instructions rather than resolution, are still properly considered failure of resolution.

The Java virtual machine instructions anewarray, checkcast, getfield, getstatic, instanceof, invokeinterface,
invokespecial, invokestatic, invokevirtual, multianewarray, new, putfield, and putstatic make symbolic
references to the runtime constant pool. Execution of any of these instructions requires resolution of its
symbolic reference.

The following sections describe the process of resolving a symbolic reference in the runtime constant pool
(§5.1) of a class or interface D. Details of resolution differ with the kind of symbolic reference to be resolved.

5.4.3.1 Class and Interface Resolution

To resolve an unresolved symbolic reference from D to a class or interface C denoted by N, the following
steps are performed:

The defining class loader of D is used to create a class or interface denoted by N. This class or
interface is C. Any exception that can be thrown as a result of failure of class or interface creation can
thus be thrown as a result of failure of class and interface resolution. The details of the process are
given in Section 5.3.

1. 

If C is an array class and its element type is a reference type, then the symbolic reference to the class
or interface representing the element type is resolved by invoking the algorithm in Section 5.4.3.1
recursively.

2. 

Finally, access permissions to C are checked:

If C is not accessible (§5.4.4) to D, class or interface resolution throws an
IllegalAccessError.

♦ 

3. 
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This condition can occur, for example, if C is a class that was originally declared to be public but
was changed to be non-public after D  was compiled.

If steps 1 and 2 succeed but step 3 fails, C is still valid and usable. Nevertheless, resolution fails, and D is
prohibited from accessing C.

5.4.3.2 Field Resolution

To resolve an unresolved symbolic reference from D to a field in a class or interface C, the symbolic
reference to C given by the field reference must first be resolved (§5.4.3.1). Therefore, any exception that can
be thrown as a result of failure of resolution of a class or interface reference can be thrown as a result of
failure of field resolution. If the reference to C can be successfully resolved, an exception relating to the
failure of resolution of the field reference itself can be thrown.

When resolving a field reference, field resolution first attempts to look up the referenced field in C and its
superclasses:

If C declares a field with the name and descriptor specified by the field reference, field lookup
succeeds. The declared field is the result of the field lookup.

1. 

Otherwise, field lookup is applied recursively to the direct superinterfaces of the specified class or
interface C.

2. 

Otherwise, if C has a superclass S, field lookup is applied recursively to S.3. 

Otherwise, field lookup fails.4. 

If field lookup fails, field resolution throws a NoSuchFieldError. Otherwise, if field lookup succeeds but
the referenced field is not accessible (§5.4.4) to D, field resolution throws an IllegalAccessError.

Otherwise, let <E, L1> be the class or interface in which the referenced field is actually declared and let L2
be the defining loader of D. Let T be the name of the type of the referenced field. The Java virtual machine
must impose the loading constraint that TL1=TL2(§5.3.4).

5.4.3.3 Method Resolution

To resolve an unresolved symbolic reference from D to a method in a class C, the symbolic reference to C
given by the method reference is first resolved (§5.4.3.1). Therefore, any exceptions that can be thrown due to
resolution of a class reference can be thrown as a result of method resolution. If the reference to C can be
successfully resolved, exceptions relating to the resolution of the method reference itself can be thrown.

When resolving a method reference:

Method resolution checks whether C is a class or an interface.

If C is an interface, method resolution throws an IncompatibleClassChangeError.♦ 

1. 

Method resolution attempts to look up the referenced method in C and its superclasses:

If C declares a method with the name and descriptor specified by the method reference,
method lookup succeeds.

♦ 

Otherwise, if C has a superclass, step 2 of method lookup is recursively invoked on the direct
superclass of C.

♦ 

2. 
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Otherwise, method lookup attempts to locate the referenced method in any of the superinterfaces of
the specified class C.

If any superinterface of C declares a method with the name and descriptor specified by the
method reference, method lookup succeeds.

♦ 

Otherwise, method lookup fails.♦ 

3. 

If method lookup fails, method resolution throws a NoSuchMethodError. If method lookup succeeds and
the method is abstract, but C is not abstract, method resolution throws an
AbstractMethodError. Otherwise, if the referenced method is not accessible (§5.4.4) to D, method
resolution throws an IllegalAccessError.

Otherwise, let <E, L1> be the class or interface in which the referenced method is actually declared and let
L2 be the defining loader of D. Let T0 be the name of the type returned by the referenced method, and let T1,
..., Tn be the names of the argument types of the referenced method. The Java virtual machine must impose
the loading constraints TiL1=TiL2 for i = 0 to n (§5.3.4).

5.4.3.4 Interface Method Resolution

To resolve an unresolved symbolic reference from D to an interface method in an interface C, the symbolic
reference to C given by the interface method reference is first resolved (§5.4.3.1). Therefore, any exceptions
that can be thrown as a result of failure of resolution of an interface reference can be thrown as a result of
failure of interface method resolution. If the reference to C can be successfully resolved, exceptions relating to
the resolution of the interface method reference itself can be thrown.

When resolving an interface method reference:

If C is not an interface, interface method resolution throws an
IncompatibleClassChangeError.

• 

Otherwise, if the referenced method does not have the same name and descriptor as a method in C or
in one of the superinterfaces of C, or in class Object, interface method resolution throws a
NoSuchMethodError.

• 

Otherwise, let <E, L1> be the interface in which the referenced interface method is actually declared and let
L2 be the defining loader of D. Let T0 be the name of the type returned by the referenced method, and let T1,
..., Tn be the names of the argument types of the referenced method. The Java virtual machine must impose
the loading constraints TiL1 = TiL2 for i = 0 to n (§5.3.4).

5.4.4 Access Control

A class or interface C is accessible to a class or interface D if and only if either of the following conditions
are true:

C is public.• 
C and D are members of the same runtime package (§5.3).• 

A field or method R is accessible to a class or interface D if and only if any of the following conditions is
true:

R is public.• 
R is protected and is declared in a class C, and D is either a subclass of C or C itself.• 
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R is either protected or package private (that is, neither public nor protected nor
private), and is declared by a class in the same runtime package as D.

• 

R is private and is declared in D.• 

This discussion of access control omits a related restriction on the target of a protected field access or
method invocation (the target must be of class D or a subtype of D). That requirement is checked as part of the
verification process (§5.4.1); it is not part of link-time access control.

5.5 Initialization

Initialization of a class or interface consists of invoking its static initializers (§2.11) and the initializers for
static fields (§2.9.2) declared in the class. This process is described in more detail in §2.17.4 and §2.17.5.

A class or interface may be initialized only as a result of:

The execution of any one of the Java virtual machine instructions new, getstatic, putstatic, or
invokestatic that references the class or interface. Each of these instructions corresponds to one of the
conditions in §2.17.4. All of the previously listed instructions reference a class directly or indirectly
through either a field reference or a method reference. Upon execution of a new instruction, the
referenced class or interface is initialized if it has not been initialized already. Upon execution of a
getstatic, putstatic, or invokestatic instruction, the class or interface that declared the resolved field or
method is initialized if it has not been initialized already.

• 

Invocation of certain reflective methods in the class library (§3.12), for example, in class Class or in
package java.lang.reflect.

• 

The initialization of one of its subclasses.• 
Its designation as the initial class at Java virtual machine start-up (§5.2).• 

Prior to initialization a class or interface must be linked, that is, verified, prepared, and optionally resolved.

5.6 Binding Native Method Implementations

Binding is the process by which a function written in a language other than the Java programming language
and implementing a native method is integrated into the Java virtual machine so that it can be executed.
Although this process is traditionally referred to as linking, the term binding is used in the specification to
avoid confusion with linking of classes or interfaces by the Java virtual machine.

1 Since JDK release 1.1 the Java virtual machine invokes the loadClass method of a class loader in order
to cause it to load a class or interface. The argument to loadClass is the name of the class or interface to be
loaded. There is also a two-argument version of the loadClass method. The second argument is a
boolean that indicates whether the class or interface is to be linked or not. Only the two-argument version
was supplied in JDK release 1.0.2, and the Java virtual machine relied on it to link the loaded class or
interface. From JDK release 1.1 onward, the Java virtual machine links the class or interface directly, without
relying on the class loader.

2 UnsupportedClassVersionError was introduced in the Java 2 platform, Standard Edition, v1.2. In
earlier versions of the platform an instance of NoClassDefFoundError or ClassFormatError was
thrown in case of an unsupported version depending on whether the class was being loaded by the system
class loader or a user-defined class loader.
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CHAPTER 6

The Java Virtual Machine Instruction Set
A Java virtual machine instruction consists of an opcode specifying the operation to be performed, followed
by zero or more operands embodying values to be operated upon. This chapter gives details about the format
of each Java virtual machine instruction and the operation it performs.

6.1 Assumptions: The Meaning of "Must"

The description of each instruction is always given in the context of Java virtual machine code that satisfies
the static and structural constraints of Chapter 4, "The class File Format." In the description of individual
Java virtual machine instructions, we frequently state that some situation "must" or "must not" be the case:
"The value2 must be of type int." The constraints of Chapter 4 guarantee that all such expectations will in
fact be met. If some constraint (a "must" or "must not") in an instruction description is not satisfied at run
time, the behavior of the Java virtual machine is undefined.

The Java virtual machine checks that Java virtual machine code satisfies the static and structural constraints
at link time using a class file verifier (see Section 4.9, "Verification of class Files"). Thus, a Java virtual
machine will only attempt to execute code from valid class files. Performing verification at link time is
attractive in that the checks are performed just once, substantially reducing the amount of work that must be
done at run time. Other implementation strategies are possible, provided that they comply with The JavaTM

Language Specification and The JavaTM Virtual Machine Specification.

6.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later in this chapter, which are used in class files
(see Chapter 4, "The class File Format"), three opcodes are reserved for internal use by a Java virtual
machine implementation. If Sun extends the instruction set of the Java virtual machine in the future, these
reserved opcodes are guaranteed not to be used.

Two of the reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics impdep1 and impdep2,
respectively. These instructions are intended to provide "back doors" or traps to implementation-specific
functionality implemented in software and hardware, respectively. The third reserved opcode, number 202
(0xca), has the mnemonic breakpoint and is intended to be used by debuggers to implement breakpoints.

Although these opcodes have been reserved, they may be used only inside a Java virtual machine
implementation. They cannot appear in valid class files. Tools such as debuggers or JIT code generators
(§3.13) that might directly interact with Java virtual machine code that has been already loaded and executed
may encounter these opcodes. Such tools should attempt to behave gracefully if they encounter any of these
reserved instructions.
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6.3 Virtual Machine Errors

A Java virtual machine implementation throws an object that is an instance of a subclass of the class
VirtualMachineError when an internal error or resource limitation prevents it from correctly
implementing the Java programming language. The Java virtual machine specification cannot predict where
resource limitations or internal errors may be encountered and does not mandate precisely when they can be
reported. Thus, any of the virtual machine errors listed as subclasses of VirtualMachineError in
Section 2.16.4 may be thrown at any time during the operation of the Java virtual machine.

6.4 Format of Instruction Descriptions

Java virtual machine instructions are represented in this chapter by entries of the form shown in Figure 6.1, in
alphabetical order and each beginning on a new page. For example:

mnemonic

Operation

Short description of the instruction

Format

mnemonic operand1 operand2 ...

Forms

mnemonic = opcode

Operand Stack

..., value1, value2  ..., value3

Description

A longer description detailing constraints on operand stack contents or constant pool entries,
the operation performed, the type of the results, etc.

Linking Exceptions

If any linking exceptions may be thrown by the execution of this instruction, they are set off
one to a line, in the order in which they must be thrown.

Runtime Exceptions

If any runtime exceptions can be thrown by the execution of an instruction, they are set off
one to a line, in the order in which they must be thrown.

Other than the linking and runtime exceptions, if any, listed for an instruction, that instruction
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must not throw any runtime exceptions except for instances of VirtualMachineError or
its subclasses.

Notes

Comments not strictly part of the specification of an instruction are set aside as notes at the
end of the description.

Each cell in the instruction format diagram represents a single 8-bit byte. The instruction's mnemonic is its
name. Its opcode is its numeric representation and is given in both decimal and hexadecimal forms. Only the
numeric representation is actually present in the Java virtual machine code in a class file.

Keep in mind that there are "operands" generated at compile time and embedded within Java virtual machine
instructions, as well as "operands" calculated at run time and supplied on the operand stack. Although they are
supplied from several different areas, all these operands represent the same thing: values to be operated upon
by the Java virtual machine instruction being executed. By implicitly taking many of its operands from its
operand stack, rather than representing them explicitly in its compiled code as additional operand bytes,
register numbers, etc., the Java virtual machine's code stays compact.

Some instructions are presented as members of a family of related instructions sharing a single description,
format, and operand stack diagram. As such, a family of instructions includes several opcodes and opcode
mnemonics; only the family mnemonic appears in the instruction format diagram, and a separate forms line
lists all member mnemonics and opcodes. For example, the forms line for the lconst_<l> family of
instructions, giving mnemonic and opcode information for the two instructions in that family (lconst_0 and
lconst_1), is

Forms

lconst_0 = 9 (0x9)
lconst_1 = 10 (0xa)

In the description of the Java virtual machine instructions, the effect of an instruction's execution on the
operand stack (§3.6.2) of the current frame (§3.6) is represented textually, with the stack growing from left to
right and each value represented separately. Thus,

Operand Stack

                    ..., value1, value2  ..., result

shows an operation that begins by having value2 on top of the operand stack with value1 just beneath it. As a
result of the execution of the instruction, value1 and value2 are popped from the operand stack and replaced
by result value, which has been calculated by the instruction. The remainder of the operand stack, represented
by an ellipsis (...), is unaffected by the instruction's execution.

Values of types long and double are represented by a single entry on the operand stack.1

1 Note that, in the first edition of this specification, values on the operand stack of types long and double
were each represented in the stack diagram by two entries.
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aaload

Operation

Load reference from array

Format

aaload

Forms

aaload = 50 (0x32)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type reference. The index must be of type int. Both arrayref and index are popped
from the operand stack. The reference value in the component of the array at index is
retrieved and pushed onto the operand stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aaload
instruction throws an ArrayIndexOutOfBoundsException.

aastore

Operation

Store into reference array

Format

aastore
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Forms

aastore = 83 (0x53)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type reference. The index must be of type int and value must be of type
reference. The arrayref, index, and value are popped from the operand stack. The
reference value is stored as the component of the array at index.

The type of value must be assignment compatible (§2.6.7) with the type of the components of
the array referenced by arrayref. Assignment of a value of reference type S (source) to a
variable of reference type T (target) is allowed only when the type S supports all the
operations defined on type T. The detailed rules follow:

If S is a class type, then:

If T is a class type, then S must be the same class (§2.8.1) as T, or S must be a subclass of T;♦ 
If T is an interface type, S must implement (§2.13) interface T.♦ 

• 

If S is an interface type, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an interface type, then T must be the same interface as S or a superinterface of S
(§2.13.2).

♦ 

• 

If S is an array type, namely, the type SC[], that is, an array of components of type SC, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an array type TC[], that is, an array of components of type TC, then one of the
following must be true:

TC and SC are the same primitive type (§2.4.1).◊ 
TC and SC are reference types (§2.4.6), and type SC is assignable to TC by these
runtime rules.

◊ 

♦ 

If T is an interface type, T must be one of the interfaces implemented by arrays (§2.15).♦ 

• 

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aastore
instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment compatible
(§2.6.7) with the actual type of the components of the array, aastore throws an
ArrayStoreException.
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aconst_null

Operation

Push null

Format

aconst_null

Forms

aconst_null = 1 (0x1)

Operand Stack

...  ..., null

Description

Push the null object reference onto the operand stack.

Notes

The Java virtual machine does not mandate a concrete value for null.

aload 

Operation

Load reference from local variable

Format

aload index

Forms

aload = 25 (0x19)

Operand Stack

...  ..., objectref
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Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The local variable at index must contain a reference. The objectref
in the local variable at index is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a local
variable onto the operand stack. This asymmetry with the astore instruction is intentional.

The aload opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

aload_<n>

Operation

Load reference from local variable

Format

aload_<n>

Forms

aload_0 = 42 (0x2a) aload_1 = 43 (0x2b) aload_2 = 44 (0x2c) aload_3 = 45 (0x2d)

Operand Stack

...  ..., objectref

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The local
variable at <n> must contain a reference. The objectref in the local variable at index is
pushed onto the operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the corresponding astore_<n>
instruction is intentional. Each of the aload_<n> instructions is the same as aload with an
index of <n>, except that the operand <n> is implicit.
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anewarray

Operation

Create new array of reference

Format

anewarray indexbyte1 indexbyte2

Forms

anewarray = 189 (0xbd)

Operand Stack

..., count  ..., arrayref

Description

The count must be of type int. It is popped off the operand stack. The count represents the
number of components of the array to be created. The unsigned indexbyte1 and indexbyte2 are
used to construct an index into the runtime constant pool of the current class (§3.6), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The runtime constant pool item at that
index must be a symbolic reference to a class, array, or interface type. The named class, array,
or interface type is resolved (§5.4.3.1). A new array with components of that type, of length
count, is allocated from the garbage-collected heap, and a reference arrayref to this new
array object is pushed onto the operand stack. All components of the new array are initialized
to null, the default value for reference types (§2.5.1).

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type, any of the
exceptions documented in §5.4.3.1 can be thrown.

Runtime Exception

Otherwise, if count is less than zero, the anewarray instruction throws a
NegativeArraySizeException.

Notes

The anewarray instruction is used to create a single dimension of an array of object
references or part of a multidimensional array.
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areturn

Operation

Return reference from method

Format

areturn

Forms

areturn = 176 (0xb0)

Operand Stack

..., objectref  [empty]

Description

The objectref must be of type reference and must refer to an object of a type that is
assignment compatible (§2.6.7) with the type represented by the return descriptor (§4.3.3) of
the current method. If the current method is a synchronized method, the monitor acquired
or reentered on invocation of the method is released or exited (respectively) as if by execution
of a monitorexit instruction. If no exception is thrown, objectref is popped from the operand
stack of the current frame (§3.6) and pushed onto the operand stack of the frame of the
invoker. Any other values on the operand stack of the current method are discarded.

The interpreter then reinstates the frame of the invoker and returns control to the invoker.

Runtime Exceptions

If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, areturn throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in §8.13 and if the first of those rules is violated during invocation of the
current method, then areturn throws an IllegalMonitorStateException.

arraylength

Operation
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Get length of array

Format

arraylength

Forms

arraylength = 190 (0xbe)

Operand Stack

..., arrayref  ..., length

Description

The arrayref must be of type reference and must refer to an array. It is popped from the
operand stack. The length of the array it references is determined. That length is pushed onto
the operand stack as an int.

Runtime Exception

If the arrayref is null, the arraylength instruction throws a NullPointerException.

astore

Operation

Store reference into local variable

Format

astore index

Forms

astore = 58 (0x3a)

Operand Stack

..., objectref  ...

Description

The Java Virtual Machine Instruction Set

141



The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The objectref on the top of the operand stack must be of type
returnAddress or of type reference. It is popped from the operand stack, and the
value of the local variable at index is set to objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when
implementing the finally clauses of the Java programming language (see Section 7.13,
"Compiling finally"). The aload instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack. This asymmetry with the
astore instruction is intentional.

The astore opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

astore_<n>

Operation

Store reference into local variable

Format

astore_<n>

Forms

astore_0 = 75 (0x4b) astore_1 = 76 (0x4c) astore_2 = 77 (0x4d) astore_3 = 78 (0x4e)

Operand Stack

..., objectref  ...

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The
objectref on the top of the operand stack must be of type returnAddress or of type
reference. It is popped from the operand stack, and the value of the local variable at <n>
is set to objectref.

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when
implementing the finally clauses of the Java programming language (see Section 7.13,
"Compiling finally"). An aload_<n> instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack. This asymmetry with the
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corresponding astore_<n> instruction is intentional.

Each of the astore_<n> instructions is the same as astore with an index of <n>, except that
the operand <n> is implicit.

athrow

Operation

Throw exception or error

Format

athrow

Forms

athrow = 191 (0xbf)

Operand Stack

..., objectref  objectref

Description

The objectref must be of type reference and must refer to an object that is an instance of
class Throwable or of a subclass of Throwable. It is popped from the operand stack. The
objectref is then thrown by searching the current method (§3.6) for the first exception handler
that matches the class of objectref, as given by the algorithm in §3.10.

If an exception handler that matches objectref is found, it contains the location of the code
intended to handle this exception. The pc register is reset to that location, the operand stack
of the current frame is cleared, objectref is pushed back onto the operand stack, and execution
continues.

If no matching exception handler is found in the current frame, that frame is popped. If the
current frame represents an invocation of a synchronized method, the monitor acquired
or reentered on invocation of the method is released or exited (respectively) as if by execution
of a monitorexit instruction. Finally, the frame of its invoker is reinstated, if such a frame
exists, and the objectref is rethrown. If no such frame exists, the current thread exits.

Runtime Exceptions

If objectref is null, athrow throws a NullPointerException instead of objectref.

Otherwise, if the method of the current frame is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on invocation of the method,
athrow throws an IllegalMonitorStateException instead of the object previously
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being thrown. This can happen, for example, if an abruptly completing synchronized
method contains a monitorexit instruction, but no monitorenter instruction, on the object on
which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in §8.13 and if the first of those rules is violated during invocation of the
current method, then athrow throws an IllegalMonitorStateException instead of
the object previously being thrown.

Notes

The operand stack diagram for the athrow instruction may be misleading: If a handler for this
exception is matched in the current method, the athrow instruction discards all the values on
the operand stack, then pushes the thrown object onto the operand stack. However, if no
handler is matched in the current method and the exception is thrown farther up the method
invocation chain, then the operand stack of the method (if any) that handles the exception is
cleared and objectref is pushed onto that empty operand stack. All intervening frames from
the method that threw the exception up to, but not including, the method that handles the
exception are discarded.
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baload

Operation

Load byte or boolean from array

Format

baload

Forms

baload = 51 (0x33)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type byte or of type boolean. The index must be of type int. Both arrayref and index
are popped from the operand stack. If the components of the array are of type byte, the
component of the array at index is retrieved and sign-extended to an int value. If the
components of the array are of type boolean, the component of the array at index is
retrieved and zero-extended to an int value. In either case the resulting value is pushed onto
the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the baload
instruction throws an ArrayIndexOutOfBoundsException.

Notes

The baload instruction is used to load values from both byte and boolean arrays. In Sun's
implementation of the Java virtual machine, boolean arrays (arrays of type T_BOOLEAN;
see §3.2 and the description of the newarray instruction in this chapter) are implemented as
arrays of 8-bit values. Other implementations may implement packed boolean arrays; the
baload instruction of such implementations must be used to access those arrays.
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bastore

Operation

Store into byte or boolean array

Format

bastore

Forms

bastore = 84 (0x54)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type byte or of type boolean. The index and the value must both be of type int. The
arrayref, index, and value are popped from the operand stack. If the components of the array
are of type byte, the int value is truncated to a byte and stored as the component of the
array indexed by index. If the components of the array are of type boolean, the int value
is truncated to its low order bit then zero-extended to the storage size for components of
boolean arrays used by the implementation. The result is stored as the component of the
array indexed by index.

Runtime Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the bastore
instruction throws an ArrayIndexOutOfBoundsException.

Notes

The bastore instruction is used to store values into both byte and boolean arrays. In Sun's
implementation of the Java virtual machine, boolean arrays (arrays of type T_BOOLEAN;
see §3.2 and the description of the newarray instruction in this chapter) are implemented as
arrays of 8-bit values. Other implementations may implement packed boolean arrays; in
such implementations the bastore instruction must be able to store boolean values into
packed boolean arrays as well as byte values into byte arrays.
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bipush

Operation

Push byte

Format

bipush byte

Forms

bipush = 16 (0x10)

Operand Stack

...  ..., value

Description

The immediate byte is sign-extended to an int value. That value is pushed onto the operand
stack.
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caload

Operation

Load char from array

Format

caload

Forms

caload = 52 (0x34)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type char. The index must be of type int. Both arrayref and index are popped from the
operand stack. The component of the array at index is retrieved and zero-extended to an int
value. That value is pushed onto the operand stack.

Runtime Exceptions

If arrayref is null, caload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the caload
instruction throws an ArrayIndexOutOfBoundsException.

castore

Operation

Store into char array

Format

castore
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Forms

castore = 85 (0x55)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type char. The index and the value must both be of type int. The arrayref, index, and
value are popped from the operand stack. The int value is truncated to a char and stored as
the component of the array indexed by index.

Runtime Exceptions

If arrayref is null, castore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the castore
instruction throws an ArrayIndexOutOfBoundsException.

checkcast

Operation

Check whether object is of given type

Format

checkcast indexbyte1 indexbyte2

Forms

checkcast = 192 (0xc0)

Operand Stack

..., objectref  ..., objectref

Description

The objectref must be of type reference. The unsigned indexbyte1 and indexbyte2 are
used to construct an index into the runtime constant pool of the current class (§3.6), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The runtime constant pool item at the
index must be a symbolic reference to a class, array, or interface type. The named class, array,
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or interface type is resolved (§5.4.3.1).

If objectref is null or can be cast to the resolved class, array, or interface type, the operand
stack is unchanged; otherwise, the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be cast
to the resolved type: if S is the class of the object referred to by objectref and T is the resolved
class, array, or interface type, checkcast determines whether objectref can be cast to type T as
follows:

If S is an ordinary (nonarray) class, then:

If T is a class type, then S must be the same class (§2.8.1) as T, or a subclass of T.♦ 
If T is an interface type, then S must implement (§2.13) interface T.♦ 

• 

If S is an interface type, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an interface type, then T must be the same interface as S or a superinterface of S
(§2.13.2).

♦ 

• 

If S is a class representing the array type SC[], that is, an array of components of type SC, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an array type TC[], that is, an array of components of type TC, then one of the
following must be true:

TC and SC are the same primitive type (§2.4.1).◊ 
TC and SC are reference types (§2.4.6), and type SC can be cast to TC by recursive
application of these rules.

◊ 

♦ 

If T is an interface type, T must be one of the interfaces implemented by arrays (§2.15).♦ 

• 

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type, any of the
exceptions documented in Section 5.4.3.1 can be thrown.

Runtime Exception

Otherwise, if objectref cannot be cast to the resolved class, array, or interface type, the
checkcast instruction throws a ClassCastException.

Notes

The checkcast instruction is very similar to the instanceof instruction. It differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof
pushes a result code), and its effect on the operand stack.
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d2f

Operation

Convert double to float

Format

d2f

Forms

d2f = 144 (0x90)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type double. It is popped from the
operand stack and undergoes value set conversion (§3.8.3) resulting in value'. Then value' is
converted to a float result using IEEE 754 round to nearest mode. The result is pushed
onto the operand stack.

Where an d2f instruction is FP-strict (§3.8.2), the result of the conversion is always rounded
to the nearest representable value in the float value set (§3.3.2).

Where an d2f instruction is not FP-strict, the result of the conversion may be taken from the
float-extended-exponent value set (§3.3.2); it is not necessarily rounded to the nearest
representable value in the float value set.

A finite value' too small to be represented as a float is converted to a zero of the same
sign; a finite value' too large to be represented as a float is converted to an infinity of the
same sign. A double NaN is converted to a float NaN.

Notes

The d2f instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value' and may also lose precision.
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d2i

Operation

Convert double to int

Format

d2i

Forms

d2i = 142 (0x8e)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type double. It is popped from the
operand stack and undergoes value set conversion (§3.8.3) resulting in value'. Then value' is
converted to an int. The result is pushed onto the operand stack:

If the value' is NaN, the result of the conversion is an int 0.• 
Otherwise, if the value' is not an infinity, it is rounded to an integer value V, rounding towards zero
using IEEE 754 round towards zero mode. If this integer value V can be represented as an int, then
the result is the int value V.

• 

Otherwise, either the value' must be too small (a negative value of large magnitude or negative
infinity), and the result is the smallest representable value of type int, or the value' must be too large
(a positive value of large magnitude or positive infinity), and the result is the largest representable
value of type int.

• 

Notes

The d2i instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value' and may also lose precision.

d2l

Operation

Convert double to long

Format
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d2l

Forms

d2l = 143 (0x8f)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type double. It is popped from the
operand stack and undergoes value set conversion (§3.8.3) resulting in value'. Then value' is
converted to a long. The result is pushed onto the operand stack:

If the value' is NaN, the result of the conversion is a long 0.• 
Otherwise, if the value' is not an infinity, it is rounded to an integer value V, rounding towards zero
using IEEE 754 round towards zero mode. If this integer value V can be represented as a long, then
the result is the long value V.

• 

Otherwise, either the value' must be too small (a negative value of large magnitude or negative
infinity), and the result is the smallest representable value of type long, or the value' must be too
large (a positive value of large magnitude or positive infinity), and the result is the largest
representable value of type long.

• 

Notes

The d2l instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value' and may also lose precision.

dadd

Operation

Add double

Format

dadd

Forms

dadd = 99 (0x63)

Operand Stack
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..., value1, value2  ..., result

Description

Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The
double result is value1' + value2'. The result is pushed onto the operand stack.

The result of a dadd instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
The sum of two infinities of opposite sign is NaN.• 
The sum of two infinities of the same sign is the infinity of that sign.• 
The sum of an infinity and any finite value is equal to the infinity.• 
The sum of two zeroes of opposite sign is positive zero.• 
The sum of two zeroes of the same sign is the zero of that sign.• 
The sum of a zero and a nonzero finite value is equal to the nonzero value.• 
The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.• 
In the remaining cases, where neither operand is an infinity, a zero, or NaN and the values have the
same sign or have different magnitudes, the sum is computed and rounded to the nearest representable
value using IEEE 754 round to nearest mode. If the magnitude is too large to represent as a double,
we say the operation overflows; the result is then an infinity of appropriate sign. If the magnitude is
too small to represent as a double, we say the operation underflows; the result is then a zero of
appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of a dadd
instruction never throws a runtime exception.

daload

Operation

Load double from array

Format

daload

Forms

daload = 49 (0x31)

Operand Stack

..., arrayref, index  ..., value

Description
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The arrayref must be of type reference and must refer to an array whose components are
of type double. The index must be of type int. Both arrayref and index are popped from
the operand stack. The double value in the component of the array at index is retrieved and
pushed onto the operand stack.

Runtime Exceptions

If arrayref is null, daload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the daload
instruction throws an ArrayIndexOutOfBoundsException.

dastore

Operation

Store into double array

Format

dastore

Forms

dastore = 82 (0x52)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type double. The index must be of type int, and value must be of type double. The
arrayref, index, and value are popped from the operand stack. The double value undergoes
value set conversion (§3.8.3), resulting in value', which is stored as the component of the
array indexed by index.

Runtime Exceptions

If arrayref is null, dastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the dastore
instruction throws an ArrayIndexOutOfBoundsException.
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dcmp<op>

Operation

Compare double

Format

dcmp<op>

Forms

dcmpg = 152 (0x98) dcmpl = 151 (0x97)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. A
floating-point comparison is performed:

If value1' is greater than value2', the int value 1 is pushed onto the operand stack.• 

Otherwise, if value1' is equal to value2', the int value 0 is pushed onto the operand stack.• 

Otherwise, if value1' is less than value2', the int value -1 is pushed onto the operand stack.• 

· Otherwise, at least one of value1' or value2' is NaN. The dcmpg instruction pushes the int value 1 onto the
operand stack and the dcmpl instruction pushes the int value -1 onto the operand stack.

Floating-point comparison is performed in accordance with IEEE 754. All values other than
NaN are ordered, with negative infinity less than all finite values and positive infinity greater
than all finite values. Positive zero and negative zero are considered equal.

Notes

The dcmpg and dcmpl instructions differ only in their treatment of a comparison involving
NaN. NaN is unordered, so any double comparison fails if either or both of its operands are
NaN. With both dcmpg and dcmpl available, any double comparison may be compiled to
push the same result onto the operand stack whether the comparison fails on non-NaN values
or fails because it encountered a NaN. For more information, see Section 7.5, "More Control
Examples."
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dconst_<d>

Operation

Push double

Format

dconst_<d>

Forms

dconst_0 = 14 (0xe) dconst_1 = 15 (0xf)

Operand Stack

...  ..., <d>

Description

Push the double constant <d> (0.0 or 1.0) onto the operand stack.

ddiv

Operation

Divide double

Format

ddiv

Forms

ddiv = 111 (0x6f)

Operand Stack

..., value1, value2  ..., result

Description
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Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The
double result is value1' / value2'. The result is pushed onto the operand stack.

The result of a ddiv instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result is positive if both values have the same
sign, negative if the values have different signs.

• 

Division of an infinity by an infinity results in NaN.• 
Division of an infinity by a finite value results in a signed infinity, with the sign-producing rule just
given.

• 

Division of a finite value by an infinity results in a signed zero, with the sign-producing rule just
given.

• 

Division of a zero by a zero results in NaN; division of zero by any other finite value results in a
signed zero, with the sign-producing rule just given.

• 

Division of a nonzero finite value by a zero results in a signed infinity, with the sign-producing rule
just given.

• 

In the remaining cases, where neither operand is an infinity, a zero, or NaN, the quotient is computed
and rounded to the nearest double using IEEE 754 round to nearest mode. If the magnitude is too
large to represent as a double, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent as a double, we say the operation
underflows; the result is then a zero of appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, division by zero, or loss of precision may occur,
execution of a ddiv instruction never throws a runtime exception.

dload

Operation

Load double from local variable

Format

dload index

Forms

dload = 24 (0x18)

Operand Stack

...  ..., value

Description
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The index is an unsigned byte. Both index and index + 1 must be indices into the local
variable array of the current frame (§3.6). The local variable at index must contain a double.
The value of the local variable at index is pushed onto the operand stack.

Notes

The dload opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

dload_<n>

Operation

Load double from local variable

Format

dload_<n>

Forms

dload_0 = 38 (0x26) dload_1 = 39 (0x27) dload_2 = 40 (0x28) dload_3 = 41 (0x29)

Operand Stack

...  ..., value

Description

Both <n> and <n> + 1 must be indices into the local variable array of the current frame
(§3.6). The local variable at <n> must contain a double. The value of the local variable at
<n> is pushed onto the operand stack.

Notes

Each of the dload_<n> instructions is the same as dload with an index of <n>, except that
the operand <n> is implicit.

dmul

Operation

Multiply double
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Format

dmul

Forms

dmul = 107 (0x6b)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The
double result is value1' * value2'. The result is pushed onto the operand stack.

The result of a dmul instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result is positive if both values have the same
sign and negative if the values have different signs.

• 

Multiplication of an infinity by a zero results in NaN.• 
Multiplication of an infinity by a finite value results in a signed infinity, with the sign-producing rule
just given.

• 

In the remaining cases, where neither an infinity nor NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round to nearest mode. If the magnitude is
too large to represent as a double, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent as a double, we say the operation
underflows; the result is then a zero of appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of a dmul
instruction never throws a runtime exception.

dneg

Operation

Negate double

Format

dneg

Forms
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dneg = 119 (0x77)

Operand Stack

..., value  ..., result

Description

The value must be of type double. It is popped from the operand stack and undergoes value
set conversion (§3.8.3), resulting in value'. The double result is the arithmetic negation of
value'. The result is pushed onto the operand stack.

For double values, negation is not the same as subtraction from zero. If x is +0.0, then
0.0-x equals +0.0, but -x equals -0.0. Unary minus merely inverts the sign of a double.

Special cases of interest:

If the operand is NaN, the result is NaN (recall that NaN has no sign).• 
If the operand is an infinity, the result is the infinity of opposite sign.• 
If the operand is a zero, the result is the zero of opposite sign.• 

drem

Operation

Remainder double

Format

drem

Forms

drem = 115 (0x73)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The result is
calculated and pushed onto the operand stack as a double.

The result of a drem instruction is not the same as that of the so-called remainder operation
defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from a
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rounding division, not a truncating division, and so its behavior is not analogous to that of the
usual integer remainder operator. Instead, the Java virtual machine defines drem to behave in
a manner analogous to that of the Java virtual machine integer remainder instructions (irem
and lrem); this may be compared with the C library function fmod.

The result of a drem instruction is governed by these rules:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result equals the sign of the dividend.• 
If the dividend is an infinity or the divisor is a zero or both, the result is NaN.• 
If the dividend is finite and the divisor is an infinity, the result equals the dividend.• 
If the dividend is a zero and the divisor is finite, the result equals the dividend.• 
In the remaining cases, where neither operand is an infinity, a zero, or NaN, the floating-point
remainder result from a dividend value1' and a divisor value2' is defined by the mathematical relation
result = value1' - (value2' * q), where q is an integer that is negative only if value1' / value2' is
negative, and positive only if value1' / value2' is positive, and whose magnitude is as large as possible
without exceeding the magnitude of the true mathematical quotient of value1' and value2'.

• 

Despite the fact that division by zero may occur, evaluation of a drem instruction never
throws a runtime exception. Overflow, underflow, or loss of precision cannot occur.

Notes

The IEEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

dreturn

Operation

Return double from method

Format

dreturn

Forms

dreturn = 175 (0xaf)

Operand Stack

..., value  [empty]

Description

The current method must have return type double. The value must be of type double. If
the current method is a synchronized method, the monitor acquired or reentered on
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invocation of the method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped from the operand stack of
the current frame (§3.6) and undergoes value set conversion (§3.8.3), resulting in value'. The
value' is pushed onto the operand stack of the frame of the invoker. Any other values on the
operand stack of the current method are discarded.

The interpreter then returns control to the invoker of the method, reinstating the frame of the
invoker.

Runtime Exceptions

If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, dreturn throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in §8.13 and if the first of those rules is violated during invocation of the
current method, then dreturn throws an IllegalMonitorStateException.

dstore

Operation

Store double into local variable

Format

dstore index

Forms

dstore = 57 (0x39)

Operand Stack

..., value  ...

Description

The index is an unsigned byte. Both index and index + 1 must be indices into the local
variable array of the current frame (§3.6). The value on the top of the operand stack must be
of type double. It is popped from the operand stack and undergoes value set conversion
(§3.8.3), resulting in value'. The local variables at index and index  +  1 are set to value'.

Notes
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The dstore opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

dstore_<n>

Operation

Store double into local variable

Format

dstore_<n>

Forms

dstore_0 = 71 (0x47) dstore_1 = 72 (0x48) dstore_2 = 73 (0x49) dstore_3 = 74 (0x4a)

Operand Stack

..., value  ...

Description

Both <n> and <n> + 1 must be indices into the local variable array of the current frame
(§3.6). The value on the top of the operand stack must be of type double. It is popped from
the operand stack and undergoes value set conversion (§3.8.3), resulting in value'. The local
variables at <n> and <n>  +  1 are set to value'.

Notes

Each of the dstore_<n> instructions is the same as dstore with an index of <n>, except that
the operand <n> is implicit.

dsub

Operation

Subtract double

Format

dsub

The Java Virtual Machine Instruction Set

166



Forms

dsub = 103 (0x67)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type double. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The
double result is value1' - value2'. The result is pushed onto the operand stack.

For double subtraction, it is always the case that a-b produces the same result as a+(-b).
However, for the dsub instruction, subtraction from zero is not the same as negation, because
if x is +0.0, then 0.0-x equals +0.0, but -x equals -0.0.

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of a dsub
instruction never throws a runtime exception.

dup

Operation

Duplicate the top operand stack value

Format

dup

Forms

dup = 89 (0x59)

Operand Stack

..., value  ..., value, value

Description

Duplicate the top value on the operand stack and push the duplicated value onto the operand
stack.

The dup instruction must not be used unless value is a value of a category 1 computational
type (§3.11.1).
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dup_x1

Operation

Duplicate the top operand stack value and insert two values down

Format

dup_x1

Forms

dup_x1 = 90 (0x5a)

Operand Stack

..., value2, value1  ..., value1, value2, value1

Description

Duplicate the top value on the operand stack and insert the duplicated value two values down
in the operand stack.

The dup_x1 instruction must not be used unless both value1 and value2 are values of a
category 1 computational type (§3.11.1).

dup_x2

Operation

Duplicate the top operand stack value and insert two or three values down

Format

dup_x2

Forms

dup_x2 = 91 (0x5b)

Operand Stack

Form 1:
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..., value3, value2, value1  ..., value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1 computational type (§3.11.1).

Form 2:

..., value2, value1  ..., value1, value2, value1

where value1 is a value of a category 1 computational type and value2 is a value of a
category 2 computational type (§3.11.1).

Description

Duplicate the top value on the operand stack and insert the duplicated value two or three
values down in the operand stack.

dup2

Operation

Duplicate the top one or two operand stack values

Format

dup2

Forms

dup2 = 92 (0x5c)

Operand Stack

Form 1:

..., value2, value1  ..., value2, value1, value2, value1

where both value1 and value2 are values of a category 1 computational type (§3.11.1).

Form 2:

..., value  ..., value, value

where value is a value of a category 2 computational type (§3.11.1).

Description
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Duplicate the top one or two values on the operand stack and push the duplicated value or
values back onto the operand stack in the original order.

dup2_x1

Operation

Duplicate the top one or two operand stack values and insert two or three values down

Format

dup2_x1

Forms

dup2_x1 = 93 (0x5d)

Operand Stack

Form 1:

..., value3, value2, value1  ..., value2, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1 computational type (§3.11.1).

Form 2:

..., value2, value1  ..., value1, value2, value1

where value1 is a value of a category 2 computational type and value2 is a value of a
category 1 computational type (§3.11.1).

Description

Duplicate the top one or two values on the operand stack and insert the duplicated values, in
the original order, one value beneath the original value or values in the operand stack.

dup2_x2

Operation

Duplicate the top one or two operand stack values and insert two, three, or four values down

Format
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dup2_x2

Forms

dup2_x2 = 94 (0x5e)

Operand Stack

Form 1:

..., value4, value3, value2, value1  ..., value2, value1, value4, value3, value2, value1

where value1, value2, value3, and value4 are all values of a category 1 computational type
(§3.11.1).

Form 2:

..., value3, value2, value1  ..., value1, value3, value2, value1

where value1 is a value of a category 2 computational type and value2 and value3 are both
values of a category 1 computational type (§3.11.1).

Form 3:

..., value3, value2, value1  ..., value2, value1, value3, value2, value1

where value1 and value2 are both values of a category 1 computational type and value3 is a
value of a category 2 computational type (§3.11.1).

Form 4:

..., value2, value1  ..., value1, value2, value1

where value1 and value2 are both values of a category 2 computational type (§3.11.1).

Description

Duplicate the top one or two values on the operand stack and insert the duplicated values, in
the original order, into the operand stack.
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f2d

Operation

Convert float to double

Format

f2d

Forms

f2d = 141 (0x8d)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type float. It is popped from the
operand stack and undergoes value set conversion (§3.8.3), resulting in value'. Then value' is
converted to a double result. This result is pushed onto the operand stack.

Notes

Where an f2d instruction is FP-strict (§3.8.2) it performs a widening primitive conversion
(§2.6.2). Because all values of the float value set (§3.3.2) are exactly representable by values
of the double value set (§3.3.2), such a conversion is exact.

Where an f2d instruction is not FP-strict, the result of the conversion may be taken from the
double-extended-exponent value set; it is not necessarily rounded to the nearest representable
value in the double value set. However, if the operand value is taken from the
float-extended-exponent value set and the target result is constrained to the double value set,
rounding of value may be required.

f2i

Operation
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Convert float to int

Format

f2i

Forms

f2i = 139 (0x8b)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type float. It is popped from the
operand stack and undergoes value set conversion (§3.8.3), resulting in value'. Then value' is
converted to an int result. This result is pushed onto the operand stack:

If the value' is NaN, the result of the conversion is an int 0.• 
Otherwise, if the value' is not an infinity, it is rounded to an integer value V, rounding towards zero
using IEEE 754 round towards zero mode. If this integer value V can be represented as an int, then
the result is the int value V.

• 

Otherwise, either the value' must be too small (a negative value of large magnitude or negative
infinity), and the result is the smallest representable value of type int, or the value' must be too large
(a positive value of large magnitude or positive infinity), and the result is the largest representable
value of type int.

• 

Notes

The f2i instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value' and may also lose precision.

f2l

Operation

Convert float to long

Format

f2l

Forms

f2l = 140 (0x8c)
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Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type float. It is popped from the
operand stack and undergoes value set conversion (§3.8.3), resulting in value'. Then value' is
converted to a long result. This result is pushed onto the operand stack:

If the value' is NaN, the result of the conversion is a long 0.• 
Otherwise, if the value' is not an infinity, it is rounded to an integer value V, rounding towards zero
using IEEE 754 round towards zero mode. If this integer value V can be represented as a long, then
the result is the long value V.

• 

Otherwise, either the value' must be too small (a negative value of large magnitude or negative
infinity), and the result is the smallest representable value of type long, or the value' must be too
large (a positive value of large magnitude or positive infinity), and the result is the largest
representable value of type long.

• 

Notes

The f2l instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value' and may also lose precision.

fadd

Operation

Add float

Format

fadd

Forms

fadd = 98 (0x62)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The float
result is value1' + value2'. The result is pushed onto the operand stack.

The Java Virtual Machine Instruction Set

175



The result of an fadd instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
The sum of two infinities of opposite sign is NaN.• 
The sum of two infinities of the same sign is the infinity of that sign.• 
The sum of an infinity and any finite value is equal to the infinity.• 
The sum of two zeroes of opposite sign is positive zero.• 
The sum of two zeroes of the same sign is the zero of that sign.• 
The sum of a zero and a nonzero finite value is equal to the nonzero value.• 
The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.• 

In the remaining cases, where neither operand is an infinity, a zero, or NaN and the values have the
same sign or have different magnitudes, the sum is computed and rounded to the nearest representable
value using IEEE 754 round to nearest mode. If the magnitude is too large to represent as a float,
we say the operation overflows; the result is then an infinity of appropriate sign. If the magnitude is
too small to represent as a float, we say the operation underflows; the result is then a zero of
appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of an
fadd instruction never throws a runtime exception.

faload

Operation

Load float from array

Format

faload

Forms

faload = 48 (0x30)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type float. The index must be of type int. Both arrayref and index are popped from the
operand stack. The float value in the component of the array at index is retrieved and
pushed onto the operand stack.

Runtime Exceptions
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If arrayref is null, faload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the faload
instruction throws an ArrayIndexOutOfBoundsException.

fastore

Operation

Store into float array

Format

fastore

Forms

fastore = 81 (0x51)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type float. The index must be of type int, and the value must be of type float. The
arrayref, index, and value are popped from the operand stack. The float value undergoes
value set conversion (§3.8.3), resulting in value', and value' is stored as the component of the
array indexed by index.

Runtime Exceptions

If arrayref is null, fastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the fastore
instruction throws an ArrayIndexOutOfBoundsException.

fcmp<op>

Operation

Compare float

Format
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fcmp<op>

Forms

fcmpg = 150 (0x96) fcmpl = 149 (0x95)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. A
floating-point comparison is performed:

If value1' is greater than value2', the int value 1 is pushed onto the operand stack.• 

Otherwise, if value1' is equal to value2', the int value 0 is pushed onto the operand stack.• 

Otherwise, if value1' is less than value2', the int value -1 is pushed onto the operand stack.• 

Otherwise, at least one of value1' or value2' is NaN. The fcmpg instruction pushes the int value 1
onto the operand stack and the fcmpl instruction pushes the int value -1 onto the operand stack.

• 

Floating-point comparison is performed in accordance with IEEE 754. All values other than
NaN are ordered, with negative infinity less than all finite values and positive infinity greater
than all finite values. Positive zero and negative zero are considered equal.

Notes

The fcmpg and fcmpl instructions differ only in their treatment of a comparison involving
NaN. NaN is unordered, so any float comparison fails if either or both of its operands are
NaN. With both fcmpg and fcmpl available, any float comparison may be compiled to push
the same result onto the operand stack whether the comparison fails on non-NaN values or
fails because it encountered a NaN. For more information, see Section 7.5, "More Control
Examples."

fconst_<f>

Operation

Push float
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Format

fconst_<f>

Forms

fconst_0 = 11 (0xb) fconst_1 = 12 (0xc) fconst_2 = 13 (0xd)

Operand Stack

...  ..., <f>

Description

Push the float constant <f> (0.0, 1.0, or 2.0) onto the operand stack.

fdiv

Operation

Divide float

Format

fdiv

Forms

fdiv = 110 (0x6e)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The float
result is value1' / value2'. The result is pushed onto the operand stack.

The result of an fdiv instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result is positive if both values have the same
sign, negative if the values have different signs.

• 

Division of an infinity by an infinity results in NaN.• 
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Division of an infinity by a finite value results in a signed infinity, with the sign-producing rule just
given.

• 

Division of a finite value by an infinity results in a signed zero, with the sign-producing rule just
given.

• 

Division of a zero by a zero results in NaN; division of zero by any other finite value results in a
signed zero, with the sign-producing rule just given.

• 

Division of a nonzero finite value by a zero results in a signed infinity, with the sign-producing rule
just given.

• 

In the remaining cases, where neither operand is an infinity, a zero, or NaN, the quotient is computed
and rounded to the nearest float using IEEE 754 round to nearest mode. If the magnitude is too
large to represent as a float, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent as a float, we say the operation
underflows; the result is then a zero of appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, division by zero, or loss of precision may occur,
execution of an fdiv instruction never throws a runtime exception.

fload

Operation

Load float from local variable

Format

fload index

Forms

fload = 23 (0x17)

Operand Stack

...  ..., value

Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The local variable at index must contain a float. The value of the
local variable at index is pushed onto the operand stack.

Notes

The fload opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.
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fload_<n>

Operation

Load float from local variable

Format

fload_<n>

Forms

fload_0 = 34 (0x22) fload_1 = 35 (0x23) fload_2 = 36 (0x24) fload_3 = 37 (0x25)

Operand Stack

...  ..., value

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The local
variable at <n> must contain a float. The value of the local variable at <n> is pushed onto
the operand stack.

Notes

Each of the fload_<n> instructions is the same as fload with an index of <n>, except that the
operand <n> is implicit.

fmul

Operation

Multiply float

Format

fmul

Forms

fmul = 106 (0x6a)
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Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The float
result is value1' * value2'. The result is pushed onto the operand stack.

The result of an fmul instruction is governed by the rules of IEEE arithmetic:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result is positive if both values have the same
sign, and negative if the values have different signs.

• 

Multiplication of an infinity by a zero results in NaN.• 
Multiplication of an infinity by a finite value results in a signed infinity, with the sign-producing rule
just given.

• 

In the remaining cases, where neither an infinity nor NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round to nearest mode. If the magnitude is
too large to represent as a float, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent as a float, we say the operation
underflows; the result is then a zero of appropriate sign.

• 

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of an
fmul instruction never throws a runtime exception.

fneg

Operation

Negate float

Format

fneg

Forms

fneg = 118 (0x76)

Operand Stack

..., value  ..., result

Description
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The value must be of type float. It is popped from the operand stack and undergoes value
set conversion (§3.8.3), resulting in value'. The float result is the arithmetic negation of
value'. This result is pushed onto the operand stack.

For float values, negation is not the same as subtraction from zero. If x is +0.0, then
0.0-x equals +0.0, but -x equals -0.0. Unary minus merely inverts the sign of a float.

Special cases of interest:

If the operand is NaN, the result is NaN (recall that NaN has no sign).• 
If the operand is an infinity, the result is the infinity of opposite sign.• 
If the operand is a zero, the result is the zero of opposite sign.• 

frem

Operation

Remainder float

Format

frem

Forms

frem = 114 (0x72)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The result is
calculated and pushed onto the operand stack as a float.

The result of an frem instruction is not the same as that of the so-called remainder operation
defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from a
rounding division, not a truncating division, and so its behavior is not analogous to that of the
usual integer remainder operator. Instead, the Java virtual machine defines frem to behave in a
manner analogous to that of the Java virtual machine integer remainder instructions (irem and
lrem); this may be compared with the C library function fmod.

The result of an frem instruction is governed by these rules:

If either value1' or value2' is NaN, the result is NaN.• 
If neither value1' nor value2' is NaN, the sign of the result equals the sign of the dividend.• 
If the dividend is an infinity or the divisor is a zero or both, the result is NaN.• 
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If the dividend is finite and the divisor is an infinity, the result equals the dividend.• 

If the dividend is a zero and the divisor is finite, the result equals the dividend.• 
In the remaining cases, where neither operand is an infinity, a zero, or NaN, the floating-point
remainder result from a dividend value1' and a divisor value2' is defined by the mathematical relation
result = value1' - (value2' * q), where q is an integer that is negative only if value1' / value2' is
negative and positive only if value1' / value2' is positive, and whose magnitude is as large as possible
without exceeding the magnitude of the true mathematical quotient of value1' and value2'.

• 

Despite the fact that division by zero may occur, evaluation of an frem instruction never
throws a runtime exception. Overflow, underflow, or loss of precision cannot occur.

Notes

The IEEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

freturn

Operation

Return float from method

Format

freturn

Forms

freturn = 174 (0xae)

Operand Stack

..., value  [empty]

Description

The current method must have return type float. The value must be of type float. If the
current method is a synchronized method, the monitor acquired or reentered on
invocation of the method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped from the operand stack of
the current frame (§3.6) and undergoes value set conversion (§3.8.3), resulting in value'. The
value' is pushed onto the operand stack of the frame of the invoker. Any other values on the
operand stack of the current method are discarded.

The interpreter then returns control to the invoker of the method, reinstating the frame of the
invoker.
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Runtime Exceptions

If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, freturn throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in §8.13 and if the first of those rules is violated during invocation of the
current method, then freturn throws an IllegalMonitorStateException.

fstore

Operation

Store float into local variable

Format

fstore index

Forms

fstore = 56 (0x38)

Operand Stack

..., value  ...

Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The value on the top of the operand stack must be of type float. It is
popped from the operand stack and undergoes value set conversion (§3.8.3), resulting in
value'. The value of the local variable at index is set to value'.

Notes

The fstore opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

fstore_<n>

Operation
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Store float into local variable

Format

fstore_<n>

Forms

fstore_0 = 67 (0x43) fstore_1 = 68 (0x44) fstore_2 = 69 (0x45) fstore_3 = 70 (0x46)

Operand Stack

..., value  ...

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The value
on the top of the operand stack must be of type float. It is popped from the operand stack
and undergoes value set conversion (§3.8.3), resulting in value'. The value of the local
variable at <n> is set to value'.

Notes

Each of the fstore_<n> is the same as fstore with an index of <n>, except that the operand
<n> is implicit.

fsub

Operation

Subtract float

Format

fsub

Forms

fsub = 102 (0x66)

Operand Stack

..., value1, value2  ..., result

Description
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Both value1 and value2 must be of type float. The values are popped from the operand
stack and undergo value set conversion (§3.8.3), resulting in value1' and value2'. The float
result is value1' - value2'. The result is pushed onto the operand stack.

For float subtraction, it is always the case that a-b produces the same result as a+(-b).
However, for the fsub instruction, subtraction from zero is not the same as negation, because
if x is +0.0, then 0.0-x equals +0.0, but -x equals -0.0.

The Java virtual machine requires support of gradual underflow as defined by IEEE 754.
Despite the fact that overflow, underflow, or loss of precision may occur, execution of an fsub
instruction never throws a runtime exception.
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getfield

Operation

Fetch field from object

Format

getfield indexbyte1 indexbyte2

Forms

getfield = 180 (0xb4)

Operand Stack

..., objectref  ..., value

Description

The objectref, which must be of type reference, is popped from the operand stack. The
unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime constant
pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a symbolic reference to a field (§5.1),
which gives the name and descriptor of the field as well as a symbolic reference to the class in
which the field is to be found. The referenced field is resolved (§5.4.3.2). The value of the
referenced field in objectref is fetched and pushed onto the operand stack.

The class of objectref must not be an array. If the field is protected (§4.6), and it is either
a member of the current class or a member of a superclass of the current class, then the class
of objectref must be either the current class or a subclass of the current class.

Linking Exceptions

During resolution of the symbolic reference to the field, any of the errors pertaining to field
resolution documented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is a static field, getfield throws an
IncompatibleClassChangeError.

Runtime Exception
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Otherwise, if objectref is null, the getfield instruction throws a
NullPointerException.

Notes

The getfield instruction cannot be used to access the length field of an array. The
arraylength instruction is used instead.

getstatic

Operation

Get static field from class

Format

getstatic indexbyte1 indexbyte2

Forms

getstatic = 178 (0xb2)

Operand Stack

...,  ..., value

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
field (§5.1), which gives the name and descriptor of the field as well as a symbolic reference
to the class or interface in which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field, the class or interface that declared the resolved field is
initialized (§5.5) if that class or interface has not already been initialized.

The value of the class or interface field is fetched and pushed onto the operand stack.

Linking Exceptions

During resolution of the symbolic reference to the class or interface field, any of the
exceptions pertaining to field resolution documented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is not a static (class) field or an interface field, getstatic
throws an IncompatibleClassChangeError.
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Runtime Exception

Otherwise, if execution of this getstatic instruction causes initialization of the referenced
class or interface, getstatic may throw an Error as detailed in Section 2.17.5.

goto

Operation

Branch always

Format

goto branchbyte1 branchbyte2

Forms

goto = 167 (0xa7)

Operand Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit
branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at
that offset from the address of the opcode of this goto instruction. The target address must be
that of an opcode of an instruction within the method that contains this goto instruction.

goto_w

Operation

Branch always (wide index)

Format

goto_w branchbyte1 branchbyte2 branchbyte3 branchbyte4

Forms

goto_w = 200 (0xc8)
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Operand Stack

No change

Description

The unsigned bytes branchbyte1, branchbyte2, branchbyte3, and branchbyte4 are used to
construct a signed 32-bit branchoffset, where branchoffset is (branchbyte1 << 24) |
(branchbyte2 << 16) | (branchbyte3 << 8) | branchbyte4. Execution proceeds at that offset
from the address of the opcode of this goto_w instruction. The target address must be that of
an opcode of an instruction within the method that contains this goto_w instruction.

Notes

Although the goto_w instruction takes a 4-byte branch offset, other factors limit the size of a
method to 65535 bytes (§4.10). This limit may be raised in a future release of the Java virtual
machine.
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i2b

Operation

Convert int to byte

Format

i2b

Forms

i2b = 145 (0x91)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack, truncated to a byte, then sign-extended to an int result. That result is pushed onto
the operand stack.

Notes

The i2b instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value. The result may also not have the same sign
as value.

i2c

Operation

Convert int to char

Format

i2c
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Forms

i2c = 146 (0x92)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack, truncated to char, then zero-extended to an int result. That result is pushed onto the
operand stack.

Notes

The i2c instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value. The result (which is always positive) may
also not have the same sign as value.

i2d

Operation

Convert int to double

Format

i2d

Forms

i2d = 135 (0x87)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack and converted to a double result. The result is pushed onto the operand stack.

Notes
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The i2d instruction performs a widening primitive conversion (§2.6.2). Because all values of
type int are exactly representable by type double, the conversion is exact.

i2f

Operation

Convert int to float

Format

i2f

Forms

i2f = 134 (0x86)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack and converted to the float result using IEEE 754 round to nearest mode. The result is
pushed onto the operand stack.

Notes

The i2f instruction performs a widening primitive conversion (§2.6.2), but may result in a
loss of precision because values of type float have only 24 significand bits.

i2l

Operation

Convert int to long

Format

i2l

Forms
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i2l = 133 (0x85)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack and sign-extended to a long result. That result is pushed onto the operand stack.

Notes

The i2l instruction performs a widening primitive conversion (§2.6.2). Because all values of
type int are exactly representable by type long, the conversion is exact.

i2s

Operation

Convert int to short

Format

i2s

Forms

i2s = 147 (0x93)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type int. It is popped from the operand
stack, truncated to a short, then sign-extended to an int result. That result is pushed onto
the operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value. The result may also not have the same sign
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as value.

iadd

Operation

Add int

Format

iadd

Forms

iadd = 96 (0x60)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 + value2. The result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type int. If overflow occurs, then the
sign of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an iadd instruction never throws a
runtime exception.

iaload

Operation

Load int from array

Format

iaload

Forms

iaload = 46 (0x2e)
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Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type int. The index must be of type int. Both arrayref and index are popped from the
operand stack. The int value in the component of the array at index is retrieved and pushed
onto the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iaload
instruction throws an ArrayIndexOutOfBoundsException.

iand

Operation

Boolean AND int

Format

iand

Forms

iand = 126 (0x7e)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. They are popped from the operand stack. An
int result is calculated by taking the bitwise AND (conjunction) of value1 and value2. The
result is pushed onto the operand stack.
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iastore

Operation

Store into int array

Format

iastore

Forms

iastore = 79 (0x4f)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type int. Both index and value must be of type int. The arrayref, index, and value are
popped from the operand stack. The int value is stored as the component of the array
indexed by index.

Runtime Exceptions

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iastore
instruction throws an ArrayIndexOutOfBoundsException.

iconst_<i>

Operation

Push int constant

Format

iconst_<i>

Forms
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iconst_m1 = 2 (0x2) iconst_0 = 3 (0x3) iconst_1 = 4 (0x4) iconst_2 = 5 (0x5) iconst_3 = 6
(0x6) iconst_4 = 7 (0x7) iconst_5 = 8 (0x8)

Operand Stack

...  ..., <i>

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand stack.

Notes

Each of this family of instructions is equivalent to bipush <i> for the respective value of
<i>, except that the operand <i> is implicit.

idiv

Operation

Divide int

Format

idiv

Forms

idiv = 108 (0x6c)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is the value of the Java programming language expression value1 / value2.
The result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/d is an
int value q whose magnitude is as large as possible while satisfying . Moreover, q
is positive when  and n and d have the same sign, but q is negative when  and
n and d have opposite signs.
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There is one special case that does not satisfy this rule: if the dividend is the negative integer
of largest possible magnitude for the int type, and the divisor is -1, then overflow occurs,
and the result is equal to the dividend. Despite the overflow, no exception is thrown in this
case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an
ArithmeticException.

if_acmp<cond>

Operation

 Branch if reference comparison succeeds

Format

if_acmp<cond> branchbyte1 branchbyte2

Forms

if_acmpeq = 165 (0xa5) if_acmpne = 166 (0xa6)

Operand Stack

..., value1, value2  ...

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparison are as follows:

eq succeeds if and only if value1 = value2• 
ne succeeds if and only if value1  value2• 

If the comparison succeeds, the unsigned branchbyte1 and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if_acmp<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at the address of the instruction
following this if_acmp<cond> instruction.
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if_icmp<cond>

Operation

Branch if int comparison succeeds

Format

if_icmp<cond> branchbyte1 branchbyte2

Forms

if_icmpeq = 159 (0x9f) if_icmpne = 160 (0xa0) if_icmplt = 161 (0xa1) if_icmpge = 162
(0xa2) if_icmpgt = 163 (0xa3) if_icmple = 164 (0xa4)

Operand Stack

..., value1, value2  ...

Description

Both value1 and value2 must be of type int. They are both popped from the operand stack
and compared. All comparisons are signed. The results of the comparison are as follows:

eq succeeds if and only if value1 = value2• 
ne succeeds if and only if value1  value2• 
lt succeeds if and only if value1 < value2• 
le succeeds if and only if value1  value2• 
gt succeeds if and only if value1 > value2• 
ge succeeds if and only if value1  value2• 

If the comparison succeeds, the unsigned branchbyte1 and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if_icmp<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if_icmp<cond>
instruction.

if<cond>

Operation

Branch if int comparison with zero succeeds

Format
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if<cond> branchbyte1 branchbyte2

Forms

ifeq = 153 (0x99) ifne = 154 (0x9a) iflt = 155 (0x9b) ifge = 156 (0x9c) ifgt = 157 (0x9d) ifle
= 158 (0x9e)

Operand Stack

..., value  ...

Description

The value must be of type int. It is popped from the operand stack and compared against
zero. All comparisons are signed. The results of the comparisons are as follows:

eq succeeds if and only if value = 0• 
ne succeeds if and only if value  0• 
lt succeeds if and only if value < 0• 
le succeeds if and only if value  0• 
gt succeeds if and only if value > 0• 
ge succeeds if and only if value  0• 

If the comparison succeeds, the unsigned branchbyte1 and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if<cond>
instruction.

ifnonnull

Operation

Branch if reference not null

Format

ifnonnull branchbyte1 branchbyte2

Forms

ifnonnull = 199 (0xc7)

Operand Stack
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..., value  ...

Description

The value must be of type reference. It is popped from the operand stack. If value is not
null, the unsigned branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset,
where the offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execution then
proceeds at that offset from the address of the opcode of this ifnonnull instruction. The target
address must be that of an opcode of an instruction within the method that contains this
ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull
instruction.

ifnull

Operation

Branch if reference is null

Format

ifnull branchbyte1 branchbyte2

Forms

ifnull = 198 (0xc6)

Operand Stack

..., value  ...

Description

The value must of type reference. It is popped from the operand stack. If value is null,
the unsigned branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execution then proceeds at
that offset from the address of the opcode of this ifnull instruction. The target address must be
that of an opcode of an instruction within the method that contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull
instruction.
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iinc

Operation

Increment local variable by constant

Format

iinc index const

Forms

iinc = 132 (0x84)

Operand Stack

No change

Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The const is an immediate signed byte. The local variable at index must
contain an int. The value const is first sign-extended to an int, and then the local variable
at index is incremented by that amount.

Notes

The iinc opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index and to increment it by a two-byte immediate value.

iload

Operation

Load int from local variable

Format

iload index

Forms

iload = 21 (0x15)
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Operand Stack

...  ..., value

Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The local variable at index must contain an int. The value of the local
variable at index is pushed onto the operand stack.

Notes

The iload opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

iload_<n>

Operation

Load int from local variable

Format

iload_<n>

Forms

iload_0 = 26 (0x1a) iload_1 = 27 (0x1b) iload_2 = 28 (0x1c) iload_3 = 29 (0x1d)

Operand Stack

...  ..., value

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The local
variable at <n> must contain an int. The value of the local variable at <n> is pushed onto
the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except that the
operand <n> is implicit.
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imul

Operation

Multiply int

Format

imul

Forms

imul = 104 (0x68)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 * value2. The result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type int. If overflow occurs, then the
sign of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an imul instruction never throws a
runtime exception.

ineg

Operation

Negate int

Format

ineg

Forms

ineg = 116 (0x74)
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Operand Stack

..., value  ..., result

Description

The value must be of type int. It is popped from the operand stack. The int result is the
arithmetic negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java virtual
machine uses two's-complement representation for integers and the range of
two's-complement values is not symmetric, the negation of the maximum negative int
results in that same maximum negative number. Despite the fact that overflow has occurred,
no exception is thrown.

For all int values x, -x equals (~x) + 1.

instanceof

Operation

Determine if object is of given type

Format

instanceof indexbyte1 indexbyte2

Forms

instanceof = 193 (0xc1)

Operand Stack

..., objectref  ..., result

Description

The objectref, which must be of type reference, is popped from the operand stack. The
unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime constant
pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at the index must be a symbolic reference to a class, array, or
interface type. The named class, array, or interface type is resolved (§5.4.3.1).

If objectref is not null and is an instance of the resolved class or array or implements the
resolved interface, the instanceof instruction pushes an int result of 1 as an int on the
operand stack. Otherwise, it pushes an int result of 0.
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The following rules are used to determine whether an objectref that is not null is an
instance of the resolved type: If S is the class of the object referred to by objectref and T is the
resolved class, array, or interface type, instanceof determines whether objectref is an instance
of T as follows:

If S is an ordinary (nonarray) class, then:

If T is a class type, then S must be the same class (§2.8.1) as T or a subclass of T.♦ 
If T is an interface type, then S must implement (§2.13) interface T.♦ 

• 

If S is an interface type, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an interface type, then T must be the same interface as S, or a superinterface of S
(§2.13.2).

♦ 

• 

If S is a class representing the array type SC[], that is, an array of components of type SC, then:

If T is a class type, then T must be Object (§2.4.7).♦ 
If T is an array type TC[], that is, an array of components of type TC, then one of the
following must be true:

TC and SC are the same primitive type (§2.4.1).◊ 
TC and SC are reference types (§2.4.6), and type SC can be cast to TC by these
runtime rules.

◊ 

♦ 

If T is an interface type, T must be one of the interfaces implemented by arrays (§2.15).♦ 

• 

Linking Exceptions

During resolution of symbolic reference to the class, array, or interface type, any of the
exceptions documented in Section 5.4.3.1 can be thrown.

Notes

The instanceof instruction is very similar to the checkcast instruction. It differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof
pushes a result code), and its effect on the operand stack.

invokeinterface

Operation

Invoke interface method

Format

invokeinterface indexbyte1 indexbyte2 count 0

Forms
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invokeinterface = 185 (0xb9)

Operand Stack

..., objectref, [arg1, [arg2 ...]]  ...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to an
interface method (§5.1), which gives the name and descriptor (§4.3.3) of the interface method
as well as a symbolic reference to the interface in which the interface method is to be found.
The named interface method is resolved (§5.4.3.4). The interface method must not be an
instance initialization method (§3.9) or the class or interface initialization method (§3.9).

The count operand is an unsigned byte that must not be zero. The objectref must be of type
reference and must be followed on the operand stack by nargs argument values, where
the number, type, and order of the values must be consistent with the descriptor of the
resolved interface method. The value of the fourth operand byte must always be zero.

Let C be the class of objectref. The actual method to be invoked is selected by the following
lookup procedure:

If C contains a declaration for an instance method with the same name and descriptor as the resolved
method, then this is the method to be invoked, and the lookup procedure terminates.

• 

Otherwise, if C has a superclass, this same lookup procedure is performed recursively using the direct
superclass of C; the method to be invoked is the result of the recursive invocation of this lookup
procedure.

• 

Otherwise, an AbstractMethodError is raised.• 

If the method is synchronized, the monitor associated with objectref is acquired or
reentered.

If the method is not native, the nargs argument values and objectref are popped from the
operand stack. A new frame is created on the Java virtual machine stack for the method being
invoked. The objectref and the argument values are consecutively made the values of local
variables of the new frame, with objectref in local variable 0, arg1 in local variable 1 (or, if
arg1 is of type long or double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion (§3.8.3) prior to being stored in
a local variable. The new frame is then made current, and the Java virtual machine pc is set
to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

If the method is native and the platform-dependent code that implements it has not yet
been bound (§5.6) into the Java virtual machine, that is done. The nargs argument values and
objectref are popped from the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-point type undergoes value
set conversion (§3.8.3) prior to being passed as a parameter. The parameters are passed and
the code is invoked in an implementation-dependent manner. When the platform-dependent
code returns:
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If the native method is synchronized, the monitor associated with objectref is released or
exited as if by execution of a monitorexit instruction.

• 

If the native method returns a value, the return value of the platform-dependent code is converted
in an implementation-dependent way to the return type of the native method and pushed onto the
operand stack.

• 

Linking Exceptions

During resolution of the symbolic reference to the interface method, any of the exceptions
documented in §5.4.3.4 can be thrown.

Runtime Exceptions

Otherwise, if objectref is null, the invokeinterface instruction throws a
NullPointerException.

Otherwise, if the class of objectref does not implement the resolved interface, invokeinterface
throws an IncompatibleClassChangeError.

Otherwise, if no method matching the resolved name and descriptor is selected,
invokeinterface throws an AbstractMethodError.

Otherwise, if the selected method is not public, invokeinterface throws an
IllegalAccessError.

Otherwise, if the selected method is abstract, invokeinterface throws an
AbstractMethodError.

Otherwise, if the selected method is native and the code that implements the method
cannot be bound, invokeinterface throws an UnsatisfiedLinkError.

Notes

The count operand of the invokeinterface instruction records a measure of the number of
argument values, where an argument value of type long or type double contributes two
units to the count value and an argument of any other type contributes one unit. This
information can also be derived from the descriptor of the selected method. The redundancy
is historical.

The fourth operand byte exists to reserve space for an additional operand used in certain of
Sun's implementations, which replace the invokeinterface instruction by a specialized
pseudo-instruction at run time. It must be retained for backwards compatibility.

The nargs argument values and objectref are not one-to-one with the first nargs + 1 local
variables. Argument values of types long and double must be stored in two consecutive
local variables, thus more than nargs local variables may be required to pass nargs argument
values to the invoked method.
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invokespecial

Operation

Invoke instance method; special handling for superclass, private, and instance initialization
method invocations

Format

invokespecial indexbyte1 indexbyte2

Forms

invokespecial = 183 (0xb7)

Operand Stack

..., objectref, [arg1, [arg2 ...]]  ...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
method (§5.1), which gives the name and descriptor (§4.3.3) of the method as well as a
symbolic reference to the class in which the method is to be found. The named method is
resolved (§5.4.3.3). Finally, if the resolved method is protected (§4.6), and it is either a
member of the current class or a member of a superclass of the current class, then the class of
objectref must be either the current class or a subclass of the current class.

Next, the resolved method is selected for invocation unless all of the following conditions are
true:

The ACC_SUPER flag (see Table 4.1, "Class access and property modifiers") is set for the current
class.

• 

The class of the resolved method is a superclass of the current class.• 
The resolved method is not an instance initialization method (§3.9).• 

If the above conditions are true, the actual method to be invoked is selected by the following
lookup procedure. Let C be the direct superclass of the current class:

If C contains a declaration for an instance method with the same name and descriptor as the resolved
method, then this method will be invoked. The lookup procedure terminates.

• 

Otherwise, if C has a superclass, this same lookup procedure is performed recursively using the direct
superclass of C. The method to be invoked is the result of the recursive invocation of this lookup
procedure.

• 

Otherwise, an AbstractMethodError is raised.• 

The objectref must be of type reference and must be followed on the operand stack by
nargs argument values, where the number, type, and order of the values must be consistent

The Java Virtual Machine Instruction Set

212



with the descriptor of the selected instance method.

If the method is synchronized, the monitor associated with objectref is acquired or
reentered.

If the method is not native, the nargs argument values and objectref are popped from the
operand stack. A new frame is created on the Java virtual machine stack for the method being
invoked. The objectref and the argument values are consecutively made the values of local
variables of the new frame, with objectref in local variable 0, arg1 in local variable 1 (or, if
arg1 is of type long or double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion (§3.8.3) prior to being stored in
a local variable. The new frame is then made current, and the Java virtual machine pc is set
to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

If the method is native and the platform-dependent code that implements it has not yet
been bound (§5.6) into the Java virtual machine, that is done. The nargs argument values and
objectref are popped from the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-point type undergoes value
set conversion (§3.8.3) prior to being passed as a parameter. The parameters are passed and
the code is invoked in an implementation-dependent manner. When the platform-dependent
code returns, the following take place:

If the native method is synchronized, the monitor associated with objectref is released or
exited as if by execution of a monitorexit instruction.

• 

If the native method returns a value, the return value of the platform-dependent code is converted
in an implementation-dependent way to the return type of the native method and pushed onto the
operand stack.

• 

Linking Exceptions

During resolution of the symbolic reference to the method, any of the exceptions pertaining
to method resolution documented in Section 5.4.3.3 can be thrown.

Otherwise, if the resolved method is an instance initialization method, and the class in which
it is declared is not the class symbolically referenced by the instruction, a
NoSuchMethodError is thrown.

Otherwise, if the resolved method is a class (static) method, the invokespecial instruction
throws an IncompatibleClassChangeError.

Otherwise, if no method matching the resolved name and descriptor is selected,
invokespecial throws an AbstractMethodError.

Otherwise, if the selected method is abstract, invokespecial throws an
AbstractMethodError.

Runtime Exceptions

Otherwise, if objectref is null, the invokespecial instruction throws a
NullPointerException.
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Otherwise, if the selected method is native and the code that implements the method
cannot be bound, invokespecial throws an UnsatisfiedLinkError.

Notes

The difference between the invokespecial and the invokevirtual instructions is that
invokevirtual invokes a method based on the class of the object. The invokespecial instruction
is used to invoke instance initialization methods (§3.9) as well as private methods and
methods of a superclass of the current class.

The invokespecial instruction was named invokenonvirtual prior to Sun's JDK release 1.0.2.

The nargs argument values and objectref are not one-to-one with the first nargs + 1 local
variables. Argument values of types long and double must be stored in two consecutive
local variables, thus more than nargs local variables may be required to pass nargs argument
values to the invoked method.

invokestatic

Operation

Invoke a class (static) method

Format

invokestatic indexbyte1 indexbyte2

Forms

invokestatic = 184 (0xb8)

Operand Stack

..., [arg1, [arg2 ...]]  ...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
method (§5.1), which gives the name and descriptor (§4.3.3) of the method as well as a
symbolic reference to the class in which the method is to be found. The named method is
resolved (§5.4.3.3). The method must not be the class or interface initialization method
(§3.9). It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared the resolved field is initialized
(§5.5) if that class has not already been initialized.
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The operand stack must contain nargs argument values, where the number, type, and order of
the values must be consistent with the descriptor of the resolved method.

If the method is synchronized, the monitor associated with the resolved class is acquired
or reentered.

If the method is not native, the nargs argument values are popped from the operand stack.
A new frame is created on the Java virtual machine stack for the method being invoked. The
nargs argument values are consecutively made the values of local variables of the new frame,
with arg1 in local variable 0 (or, if arg1 is of type long or double, in local variables 0 and
1) and so on. Any argument value that is of a floating-point type undergoes value set
conversion (§3.8.3) prior to being stored in a local variable. The new frame is then made
current, and the Java virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

If the method is native and the platform-dependent code that implements it has not yet
been bound (§5.6) into the Java virtual machine, that is done. The nargs argument values are
popped from the operand stack and are passed as parameters to the code that implements the
method. Any argument value that is of a floating-point type undergoes value set conversion
(§3.8.3) prior to being passed as a parameter. The parameters are passed and the code is
invoked in an implementation-dependent manner. When the platform-dependent code returns,
the following take place:

If the native method is synchronized, the monitor associated with the resolved class is released
or exited as if by execution of a monitorexit instruction.

• 

If the native method returns a value, the return value of the platform-dependent code is converted
in an implementation-dependent way to the return type of the native method and pushed onto the
operand stack.

• 

Linking Exceptions

During resolution of the symbolic reference to the method, any of the exceptions pertaining
to method resolution documented in Section 5.4.3.3 can be thrown.

Otherwise, if the resolved method is an instance method, the invokestatic instruction throws
an IncompatibleClassChangeError.

Runtime Exceptions

Otherwise, if execution of this invokestatic instruction causes initialization of the referenced
class, invokestatic may throw an Error as detailed in Section 2.17.5.

Otherwise, if the resolved method is native and the code that implements the method
cannot be bound, invokestatic throws an UnsatisfiedLinkError.

Notes

The nargs argument values are not one-to-one with the first nargs local variables. Argument
values of types long and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs argument values to the invoked
method.
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invokevirtual

Operation

Invoke instance method; dispatch based on class

Format

invokevirtual indexbyte1 indexbyte2

Forms

invokevirtual = 182 (0xb6)

Operand Stack

..., objectref, [arg1, [arg2 ...]]  ...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
method (§5.1), which gives the name and descriptor (§4.3.3) of the method as well as a
symbolic reference to the class in which the method is to be found. The named method is
resolved (§5.4.3.3). The method must not be an instance initialization method (§3.9) or the
class or interface initialization method (§3.9). Finally, if the resolved method is protected
(§4.6), and it is either a member of the current class or a member of a superclass of the
current class, then the class of objectref must be either the current class or a subclass of the
current class.

Let C be the class of objectref. The actual method to be invoked is selected by the following
lookup procedure:

If C contains a declaration for an instance method with the same name and descriptor as the resolved
method, and the resolved method is accessible from C, then this is the method to be invoked, and the
lookup procedure terminates.

• 

Otherwise, if C has a superclass, this same lookup procedure is performed recursively using the direct
superclass of C  ; the method to be invoked is the result of the recursive invocation of this lookup
procedure.

• 

Otherwise, an AbstractMethodError is raised.• 

The objectref must be followed on the operand stack by nargs argument values, where the
number, type, and order of the values must be consistent with the descriptor of the selected
instance method.

If the method is synchronized, the monitor associated with objectref is acquired or
reentered.
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If the method is not native, the nargs argument values and objectref are popped from the
operand stack. A new frame is created on the Java virtual machine stack for the method being
invoked. The objectref and the argument values are consecutively made the values of local
variables of the new frame, with objectref in local variable 0, arg1 in local variable 1 (or, if
arg1 is of type long or double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion (§3.8.3) prior to being stored in
a local variable. The new frame is then made current, and the Java virtual machine pc is set
to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

If the method is native and the platform-dependent code that implements it has not yet
been bound (§5.6) into the Java virtual machine, that is done. The nargs argument values and
objectref are popped from the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-point type undergoes value
set conversion (§3.8.3) prior to being passed as a parameter. The parameters are passed and
the code is invoked in an implementation-dependent manner. When the platform-dependent
code returns, the following take place:

If the native method is synchronized, the monitor associated with objectref is released or
exited as if by execution of a monitorexit instruction.

• 

If the native method returns a value, the return value of the platform-dependent code is converted
in an implementation-dependent way to the return type of the native method and pushed onto the
operand stack.

• 

Linking Exceptions

During resolution of the symbolic reference to the method, any of the exceptions pertaining
to method resolution documented in Section 5.4.3.3 can be thrown.

Otherwise, if the resolved method is a class (static) method, the invokevirtual instruction
throws an IncompatibleClassChangeError.

Runtime Exceptions

Otherwise, if objectref is null, the invokevirtual instruction throws a
NullPointerException.

Otherwise, if no method matching the resolved name and descriptor is selected, invokevirtual
throws an AbstractMethodError.

Otherwise, if the selected method is abstract, invokevirtual throws an
AbstractMethodError.

Otherwise, if the selected method is native and the code that implements the method
cannot be bound, invokevirtual throws an UnsatisfiedLinkError.

Notes

The nargs argument values and objectref are not one-to-one with the first nargs + 1 local
variables. Argument values of types long and double must be stored in two consecutive
local variables, thus more than nargs local variables may be required to pass nargs argument
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values to the invoked method.

ior

Operation

Boolean OR int

Format

ior

Forms

ior = 128 (0x80)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. They are popped from the operand stack. An
int result is calculated by taking the bitwise inclusive OR of value1 and value2. The result
is pushed onto the operand stack.

irem

Operation

Remainder int

Format

irem

Forms

irem = 112 (0x70)

Operand Stack

..., value1, value2  ..., result
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Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 - (value1 / value2) * value2. The result is pushed onto the operand
stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This identity
holds even in the special case in which the dividend is the negative int of largest possible
magnitude for its type and the divisor is -1 (the remainder is 0). It follows from this rule that
the result of the remainder operation can be negative only if the dividend is negative and can
be positive only if the dividend is positive. Moreover, the magnitude of the result is always
less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for an int remainder operator is 0, irem throws an
ArithmeticException.

ireturn

Operation

Return int from method

Format

ireturn

Forms

ireturn = 172 (0xac)

Operand Stack

..., value  [empty]

Description

The current method must have return type boolean, byte, short, char, or int. The
value must be of type int. If the current method is a synchronized method, the monitor
acquired or reentered on invocation of the method is released or exited (respectively) as if by
execution of a monitorexit instruction. If no exception is thrown, value is popped from the
operand stack of the current frame (§3.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current method are discarded.

The interpreter then returns control to the invoker of the method, reinstating the frame of the
invoker.
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Runtime Exceptions

If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, ireturn throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in Section 8.13 and if the first of those rules is violated during invocation of
the current method, then ireturn throws an IllegalMonitorStateException.

ishl

Operation

Shift left int

Format

ishl

Forms

ishl = 120 (0x78)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
An int result is calculated by shifting value1 left by s bit positions, where s is the value of
the low 5 bits of value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift
distance actually used is always in the range 0 to 31, inclusive, as if value2 were subjected to
a bitwise logical AND with the mask value 0x1f.
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ishr

Operation

Arithmetic shift right int

Format

ishr

Forms

ishr = 122 (0x7a)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
An int result is calculated by shifting value1 right by s bit positions, with sign extension,
where s is the value of the low 5 bits of value2. The result is pushed onto the operand stack.

Notes

The resulting value is , where s is value2 & 0x1f. For nonnegative value1, this is
equivalent to truncating int division by 2 to the power s. The shift distance actually used is
always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND
with the mask value 0x1f.

istore

Operation

Store int into local variable

Format

istore index

Forms

istore = 54 (0x36)
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Operand Stack

..., value  ...

Description

The index is an unsigned byte that must be an index into the local variable array of the
current frame (§3.6). The value on the top of the operand stack must be of type int. It is
popped from the operand stack, and the value of the local variable at index is set to value.

Notes

The istore opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

istore_<n>

Operation

Store int into local variable

Format

istore_<n>

Forms

istore_0 = 59 (0x3b) istore_1 = 60 (0x3c) istore_2 = 61 (0x3d) istore_3 = 62 (0x3e)

Operand Stack

..., value  ...

Description

The <n> must be an index into the local variable array of the current frame (§3.6). The value
on the top of the operand stack must be of type int. It is popped from the operand stack, and
the value of the local variable at <n> is set to value.

Notes

Each of the istore_<n> instructions is the same as istore with an index of <n>, except that
the operand <n> is implicit.
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isub

Operation

Subtract int

Format

isub

Forms

isub = 100 (0x64)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 - value2. The result is pushed onto the operand stack.

For int subtraction, a - b produces the same result as a + (-b). For int values, subtraction
from zero is the same as negation.

The result is the 32 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type int. If overflow occurs, then the
sign of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an isub instruction never throws a
runtime exception.

iushr

Operation

Logical shift right int

Format

iushr

Forms

iushr = 124 (0x7c)
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Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack.
An int result is calculated by shifting value1 right by s bit positions, with zero extension,
where s is the value of the low 5 bits of value2. The result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s; if
value1 is negative, the result is equal to the value of the expression (value1 >> s) + (2 << ~s).
The addition of the (2 << ~s) term cancels out the propagated sign bit. The shift distance
actually used is always in the range 0 to 31, inclusive.

ixor

Operation

Boolean XOR int

Format

ixor

Forms

ixor = 130 (0x82)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type int. They are popped from the operand stack. An
int result is calculated by taking the bitwise exclusive OR of value1 and value2. The result
is pushed onto the operand stack.

Contents | Prev | Next | Index

The JavaTM Virtual Machine Specification
Copyright &#169 1999 Sun Microsystems, Inc. All rights reserved
Please send any comments or corrections to jvm@java.sun.com

The Java Virtual Machine Instruction Set

224

mailto:jvm@java.sun.com


Contents | Prev | Next | Index The JavaTM Virtual Machine Specification

A B C D F G I J L M N P R S T W 

jsr

Operation

Jump subroutine

Format

jsr branchbyte1 branchbyte2

Forms

jsr = 168 (0xa8)

Operand Stack

...  ..., address

Description

The address of the opcode of the instruction immediately following this jsr instruction is
pushed onto the operand stack as a value of type returnAddress. The unsigned
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset, where the offset is
(branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the address of this
jsr instruction. The target address must be that of an opcode of an instruction within the
method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the finally
clauses of the Java programming language (see Section 7.13, "Compiling finally"). Note
that jsr pushes the address onto the operand stack and ret gets it out of a local variable. This
asymmetry is intentional.

jsr_w

Operation

Jump subroutine (wide index)

Format
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jsr_w branchbyte1 branchbyte2 branchbyte3 branchbyte4

Forms

jsr_w = 201 (0xc9)

Operand Stack

...  ..., address

Description

The address of the opcode of the instruction immediately following this jsr_w instruction is
pushed onto the operand stack as a value of type returnAddress. The unsigned
branchbyte1, branchbyte2, branchbyte3, and branchbyte4 are used to construct a signed
32-bit offset, where the offset is (branchbyte1 << 24) | (branchbyte2 << 16) | (branchbyte3 <<
8) | branchbyte4. Execution proceeds at that offset from the address of this jsr_w instruction.
The target address must be that of an opcode of an instruction within the method that contains
this jsr_w instruction.

Notes

The jsr_w instruction is used with the ret instruction in the implementation of the finally
clauses of the Java programming language (see Section 7.13, "Compiling finally"). Note
that jsr_w pushes the address onto the operand stack and ret gets it out of a local variable.
This asymmetry is intentional.

Although the jsr_w instruction takes a 4-byte branch offset, other factors limit the size of a
method to 65535 bytes (§4.10). This limit may be raised in a future release of the Java virtual
machine.
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l2d

Operation

Convert long to double

Format

l2d

Forms

l2d = 138 (0x8a)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type long. It is popped from the
operand stack and converted to a double result using IEEE 754 round to nearest mode. The
result is pushed onto the operand stack.

Notes

The l2d instruction performs a widening primitive conversion (§2.6.2) that may lose
precision because values of type double have only 53 significand bits.

l2f

Operation

Convert long to float

Format

l2f

Forms
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l2f = 137 (0x89)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type long. It is popped from the
operand stack and converted to a float result using IEEE 754 round to nearest mode. The
result is pushed onto the operand stack.

Notes

The l2f instruction performs a widening primitive conversion (§2.6.2) that may lose precision
because values of type float have only 24 significand bits.

l2i

Operation

Convert long to int

Format

l2i

Forms

l2i = 136 (0x88)

Operand Stack

..., value  ..., result

Description

The value on the top of the operand stack must be of type long. It is popped from the
operand stack and converted to an int result by taking the low-order 32 bits of the long
value and discarding the high-order 32 bits. The result is pushed onto the operand stack.

Notes
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The l2i instruction performs a narrowing primitive conversion (§2.6.3). It may lose
information about the overall magnitude of value. The result may also not have the same sign
as value.

ladd

Operation

Add long

Format

ladd

Forms

ladd = 97 (0x61)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. The values are popped from the operand
stack. The long result is value1 + value2. The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type long. If overflow occurs, the sign
of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an ladd instruction never throws a
runtime exception.

laload

Operation

Load long from array

Format

laload
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Forms

laload = 47 (0x2f)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type long. The index must be of type int. Both arrayref and index are popped from the
operand stack. The long value in the component of the array at index is retrieved and pushed
onto the operand stack.

Runtime Exceptions

If arrayref is null, laload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the laload
instruction throws an ArrayIndexOutOfBoundsException.

land

Operation

Boolean AND long

Format

land

Forms

land = 127 (0x7f)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. They are popped from the operand stack. A
long result is calculated by taking the bitwise AND of value1 and value2. The result is
pushed onto the operand stack.
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lastore

Operation

Store into long array

Format

lastore

Forms

lastore = 80 (0x50)

Operand Stack

..., arrayref, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type long. The index must be of type int, and value must be of type long. The
arrayref, index, and value are popped from the operand stack. The long value is stored as
the component of the array indexed by index.

Runtime Exceptions

If arrayref is null, lastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the lastore
instruction throws an ArrayIndexOutOfBoundsException.

lcmp

Operation

Compare long

Format

lcmp

Forms
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lcmp = 148 (0x94)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. They are both popped from the operand
stack, and a signed integer comparison is performed. If value1 is greater than value2, the int
value 1 is pushed onto the operand stack. If value1 is equal to value2, the int value 0 is
pushed onto the operand stack. If value1 is less than value2, the int value -1 is pushed onto
the operand stack.

lconst_<l>

Operation

Push long constant

Format

lconst_<l>

Forms

lconst_0 = 9 (0x9) lconst_1 = 10 (0xa)

Operand Stack

...  ..., <l>

Description

Push the long constant <l> (0 or 1) onto the operand stack.

ldc

Operation

Push item from runtime constant pool

Format
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ldc index

Forms

ldc = 18 (0x12)

Operand Stack

...  ..., value

Description

The index is an unsigned byte that must be a valid index into the runtime constant pool of the
current class (§3.6). The runtime constant pool entry at index either must be a runtime
constant of type int or float, or must be a symbolic reference to a string literal (§5.1).

If the runtime constant pool entry is a runtime constant of type int or float, the numeric
value of that runtime constant is pushed onto the operand stack as an int or float,
respectively.

Otherwise, the runtime constant pool entry must be a reference to an instance of class
String representing a string literal (§5.1). A reference to that instance, value, is pushed
onto the operand stack.

Notes

The ldc instruction can only be used to push a value of type float taken from the float
value set (§3.3.2) because a constant of type float in the constant pool (§4.4.4) must be
taken from the float value set.

ldc_w

Operation

Push item from runtime constant pool (wide index)

Format

ldc_w indexbyte1 indexbyte2

Forms

ldc_w = 19 (0x13)

Operand Stack
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...  ..., value

Description

The unsigned indexbyte1 and indexbyte2 are assembled into an unsigned 16-bit index into the
runtime constant pool of the current class (§3.6), where the value of the index is calculated as
(indexbyte1 << 8) | indexbyte2. The index must be a valid index into the runtime constant
pool of the current class. The runtime constant pool entry at the index either must be a
runtime constant of type int or float, or must be a symbolic reference to a string literal
(§5.1).

If the runtime constant pool entry is a runtime constant of type int or float, the numeric
value of that runtime constant is pushed onto the operand stack as an int or float,
respectively.

Otherwise, the runtime constant pool entry must be a reference to an instance of class
String representing a string literal (§5.1). A reference to that instance, value, is pushed
onto the operand stack.

Notes

The ldc_w instruction is identical to the ldc instruction except for its wider runtime constant
pool index.

The ldc_w instruction can only be used to push a value of type float taken from the float
value set (§3.3.2) because a constant of type float in the constant pool (§4.4.4) must be
taken from the float value set.

ldc2_w

Operation

Push long or double from runtime constant pool (wide index)

Format

ldc2_w indexbyte1 indexbyte2

Forms

ldc2_w = 20 (0x14)

Operand Stack

...  ..., value

Description
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The unsigned indexbyte1 and indexbyte2 are assembled into an unsigned 16-bit index into the
runtime constant pool of the current class (§3.6), where the value of the index is calculated as
(indexbyte1 << 8) | indexbyte2. The index must be a valid index into the runtime constant
pool of the current class. The runtime constant pool entry at the index must be a runtime
constant of type long or double (§5.1). The numeric value of that runtime constant is
pushed onto the operand stack as a long or double, respectively.

Notes

Only a wide-index version of the ldc2_w instruction exists; there is no ldc2 instruction that
pushes a long or double with a single-byte index.

The ldc2_w instruction can only be used to push a value of type double taken from the
double value set (§3.3.2) because a constant of type double in the constant pool (§4.4.5)
must be taken from the double value set.

ldiv

Operation

Divide long

Format

ldiv

Forms

ldiv = 109 (0x6d)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. The values are popped from the operand
stack. The long result is the value of the Java programming language expression value1 /
value2. The result is pushed onto the operand stack.

A long division rounds towards 0; that is, the quotient produced for long values in n / d is
a long value q whose magnitude is as large as possible while satisfying .
Moreover, q is positive when  and n and d have the same sign, but q is negative when

 and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative integer
of largest possible magnitude for the long type and the divisor is -1, then overflow occurs
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and the result is equal to the dividend; despite the overflow, no exception is thrown in this
case.

Runtime Exception

If the value of the divisor in a long division is 0, ldiv throws an
ArithmeticException.

lload

Operation

Load long from local variable

Format

lload index

Forms

lload = 22 (0x16)

Operand Stack

...  ..., value

Description

The index is an unsigned byte. Both index and index + 1 must be indices into the local
variable array of the current frame (§3.6). The local variable at index must contain a long.
The value of the local variable at index is pushed onto the operand stack.

Notes

The lload opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

lload_<n>

Operation

Load long from local variable

Format
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lload_<n>

Forms

lload_0 = 30 (0x1e) lload_1 = 31 (0x1f) lload_2 = 32 (0x20) lload_3 = 33 (0x21)

Operand Stack

...  ..., value

Description

Both <n> and <n> + 1 must be indices into the local variable array of the current frame
(§3.6). The local variable at <n> must contain a long. The value of the local variable at <n>
is pushed onto the operand stack.

Notes

Each of the lload_<n> instructions is the same as lload with an index of <n>, except that the
operand <n> is implicit.

lmul

Operation

Multiply long

Format

lmul

Forms

lmul = 105 (0x69)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. The values are popped from the operand
stack. The long result is value1 * value2. The result is pushed onto the operand stack.
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The result is the 64 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type long. If overflow occurs, the sign
of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an lmul instruction never throws a
runtime exception.

lneg

Operation

Negate long

Format

lneg

Forms

lneg = 117 (0x75)

Operand Stack

..., value  ..., result

Description

The value must be of type long. It is popped from the operand stack. The long result is the
arithmetic negation of value, -value. The result is pushed onto the operand stack.

For long values, negation is the same as subtraction from zero. Because the Java virtual
machine uses two's-complement representation for integers and the range of
two's-complement values is not symmetric, the negation of the maximum negative long
results in that same maximum negative number. Despite the fact that overflow has occurred,
no exception is thrown.

For all long values x, -x equals (~x) + 1.

lookupswitch

Operation

Access jump table by key match and jump

Format
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lookupswitch <0-3 byte pad\> defaultbyte1 defaultbyte2 defaultbyte3 defaultbyte4 npairs1
npairs2 npairs3 npairs4 match-offset pairs...

Forms

lookupswitch = 171 (0xab)

Operand Stack

..., key  ...

Description

A lookupswitch is a variable-length instruction. Immediately after the lookupswitch opcode,
between zero and three null bytes (zeroed bytes, not the null object) are inserted as padding.
The number of null bytes is chosen so that the defaultbyte1 begins at an address that is a
multiple of four bytes from the start of the current method (the opcode of its first instruction).
Immediately after the padding follow a series of signed 32-bit values: default, npairs, and
then npairs pairs of signed 32-bit values. The npairs must be greater than or equal to 0. Each
of the npairs pairs consists of an int match and a signed 32-bit offset. Each of these signed
32-bit values is constructed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3
<< 8) | byte4.

The table match-offset pairs of the lookupswitch instruction must be sorted in increasing
numerical order by match.

The key must be of type int and is popped from the operand stack. The key is compared
against the match values. If it is equal to one of them, then a target address is calculated by
adding the corresponding offset to the address of the opcode of this lookupswitch instruction.
If the key does not match any of the match values, the target address is calculated by adding
default to the address of the opcode of this lookupswitch instruction. Execution then continues
at the target address.

The target address that can be calculated from the offset of each match-offset pair, as well as
the one calculated from default, must be the address of an opcode of an instruction within the
method that contains this lookupswitch instruction.

Notes

The alignment required of the 4-byte operands of the lookupswitch instruction guarantees
4-byte alignment of those operands if and only if the method that contains the lookupswitch is
positioned on a 4-byte boundary.

The match-offset pairs are sorted to support lookup routines that are quicker than linear
search.
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lor

Operation

Boolean OR long

Format

lor

Forms

lor = 129 (0x81)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. They are popped from the operand stack. A
long result is calculated by taking the bitwise inclusive OR of value1 and value2. The result
is pushed onto the operand stack.

lrem

Operation

Remainder long

Format

lrem

Forms

lrem = 113 (0x71)

Operand Stack

..., value1, value2  ..., result

Description

The Java Virtual Machine Instruction Set

240



Both value1 and value2 must be of type long. The values are popped from the operand
stack. The long result is value1 - (value1 / value2) * value2. The result is pushed onto the
operand stack.

The result of the lrem instruction is such that (a/b)*b + (a%b) is equal to a. This identity
holds even in the special case in which the dividend is the negative long of largest possible
magnitude for its type and the divisor is -1 (the remainder is 0). It follows from this rule that
the result of the remainder operation can be negative only if the dividend is negative and can
be positive only if the dividend is positive; moreover, the magnitude of the result is always
less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a long remainder operator is 0, lrem throws an
ArithmeticException.

lreturn

Operation

Return long from method

Format

lreturn

Forms

lreturn = 173 (0xad)

Operand Stack

..., value  [empty]

Description

The current method must have return type long. The value must be of type long. If the
current method is a synchronized method, the monitor acquired or reentered on
invocation of the method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped from the operand stack of
the current frame (§3.6) and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are discarded.

The interpreter then returns control to the invoker of the method, reinstating the frame of the
invoker.

Runtime Exceptions
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If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, lreturn throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in Section 8.13 and if the first of those rules is violated during invocation of
the current method, then lreturn throws an IllegalMonitorStateException.

lshl

Operation

Shift left

Format

lshl
long

Forms

lshl = 121 (0x79)

Operand Stack

..., value1, value2  ..., result

Description

The value1 must be of type long, and value2 must be of type int. The values are popped
from the operand stack. A long result is calculated by shifting value1 left by s bit positions,
where s is the low 6 bits of value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift
distance actually used is therefore always in the range 0 to 63, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x3f.

lshr

Operation
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Arithmetic shift right long

Format

lshr

Forms

lshr = 123 (0x7b)

Operand Stack

..., value1, value2  ..., result

Description

The value1 must be of type long, and value2 must be of type int. The values are popped
from the operand stack. A long result is calculated by shifting value1 right by s bit
positions, with sign extension, where s is the value of the low 6 bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is  , where s is value2 & 0x3f. For nonnegative value1, this
is equivalent to truncating long division by 2 to the power s. The shift distance actually
used is therefore always in the range 0 to 63, inclusive, as if value2 were subjected to a
bitwise logical AND with the mask value 0x3f.

lstore

Operation

Store long into local variable

Format

lstore index

Forms

lstore = 55 (0x37)

Operand Stack

..., value  ...
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Description

The index is an unsigned byte. Both index and index + 1 must be indices into the local
variable array of the current frame (§3.6). The value on the top of the operand stack must be
of type long. It is popped from the operand stack, and the local variables at index and index
 +  1 are set to value.

Notes

The lstore opcode can be used in conjunction with the wide instruction to access a local
variable using a two-byte unsigned index.

lstore_<n>

Operation

Store long into local variable

Format

lstore_<n>

Forms

lstore_0 = 63 (0x3f) lstore_1 = 64 (0x40) lstore_2 = 65 (0x41) lstore_3 = 66 (0x42)

Operand Stack

..., value  ...

Description

Both <n> and <n> + 1 must be indices into the local variable array of the current frame
(§3.6). The value on the top of the operand stack must be of type long. It is popped from the
operand stack, and the local variables at <n> and <n>  +  1 are set to value.

Notes

Each of the lstore_<n> instructions is the same as lstore with an index of <n>, except that
the operand <n> is implicit.

lsub

Operation
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Subtract long

Format

lsub

Forms

lsub = 101 (0x65)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. The values are popped from the operand
stack. The long result is value1 - value2. The result is pushed onto the operand stack.

For long subtraction, a-b produces the same result as a+(-b). For long values,
subtraction from zero is the same as negation.

The result is the 64 low-order bits of the true mathematical result in a sufficiently wide
two's-complement format, represented as a value of type long. If overflow occurs, then the
sign of the result may not be the same as the sign of the mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an lsub instruction never throws a
runtime exception.

lushr

Operation

Logical shift right long

Format

lushr

Forms

lushr = 125 (0x7d)

Operand Stack

..., value1, value2  ..., result
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Description

The value1 must be of type long, and value2 must be of type int. The values are popped
from the operand stack. A long result is calculated by shifting value1 right logically (with
zero extension) by the amount indicated by the low 6 bits of value2. The result is pushed onto
the operand stack.

Notes

If value1 is positive and s is value2 & 0x3f, the result is the same as that of value1 >> s; if
value1 is negative, the result is equal to the value of the expression (value1 >> s) + (2L <<
~s). The addition of the (2L << ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 63, inclusive.

lxor

Operation

Boolean XOR long

Format

lxor

Forms

lxor = 131 (0x83)

Operand Stack

..., value1, value2  ..., result

Description

Both value1 and value2 must be of type long. They are popped from the operand stack. A
long result is calculated by taking the bitwise exclusive OR of value1 and value2. The result
is pushed onto the operand stack.
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monitorenter

Operation

Enter monitor for object

Format

monitorenter

Forms

monitorenter = 194 (0xc2)

Operand Stack

..., objectref  ...

Description

The objectref must be of type reference.

Each object has a monitor associated with it. The thread that executes monitorenter gains
ownership of the monitor associated with objectref. If another thread already owns the
monitor associated with objectref, the current thread waits until the object is unlocked, then
tries again to gain ownership. If the current thread already owns the monitor associated with
objectref, it increments a counter in the monitor indicating the number of times this thread has
entered the monitor. If the monitor associated with objectref is not owned by any thread, the
current thread becomes the owner of the monitor, setting the entry count of this monitor to 1.

Runtime Exception

If objectref is null, monitorenter throws a NullPointerException.

Notes

For detailed information about threads and monitors in the Java virtual machine, see Chapter
8, "Threads and Locks."

A monitorenter instruction may be used with one or more monitorexit instructions to
implement a synchronized statement in the Java programming language. The
monitorenter and monitorexit instructions are not used in the implementation of
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synchronized methods, although they can be used to provide equivalent locking
semantics; however, monitor entry on invocation of a synchronized method is handled
implicitly by the Java virtual machine's method invocation instructions. See Section 7.14 for
more information on the use of the monitorenter and monitorexit instructions.

The association of a monitor with an object may be managed in various ways that are beyond
the scope of this specification. For instance, the monitor may be allocated and deallocated at
the same time as the object. Alternatively, it may be dynamically allocated at the time when a
thread attempts to gain exclusive access to the object and freed at some later time when no
thread remains in the monitor for the object.

The synchronization constructs of the Java programming language require support for
operations on monitors besides entry and exit. These include waiting on a monitor
(Object.wait) and notifying other threads waiting on a monitor (Object.notifyAll
and Object.notify). These operations are supported in the standard package
java.lang supplied with the Java virtual machine. No explicit support for these operations
appears in the instruction set of the Java virtual machine.

monitorexit

Operation

Exit monitor for object

Format

monitorexit

Forms

monitorexit = 195 (0xc3)

Operand Stack

..., objectref  ...

Description

The objectref must be of type reference.

The current thread should be the owner of the monitor associated with the instance
referenced by objectref. The thread decrements the counter indicating the number of times it
has entered this monitor. If as a result the value of the counter becomes zero, the current
thread releases the monitor. If the monitor associated with objectref becomes free, other
threads that are waiting to acquire that monitor are allowed to attempt to do so.

Runtime Exceptions
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If objectref is null, monitorexit throws a NullPointerException.

Otherwise, if the current thread is not the owner of the monitor, monitorexit throws an
IllegalMonitorStateException.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in Section 8.13 and if the second of those rules is violated by the execution of
this monitorexit instruction, then monitorexit throws an
IllegalMonitorStateException.

Notes

For detailed information about threads and monitors in the Java virtual machine, see Chapter
8, "Threads and Locks."

One or more monitorexit instructions may be used with a monitorenter instruction to
implement a synchronized statement in the Java programming language. The
monitorenter and monitorexit instructions are not used in the implementation of
synchronized methods, although they can be used to provide equivalent locking
semantics.

The Java virtual machine supports exceptions thrown within synchronized methods and
synchronized statements differently. Monitor exit on normal synchronized method
completion is handled by the Java virtual machine's return instructions. Monitor exit on
abrupt synchronized method completion is handled implicitly by the Java virtual
machine's athrow instruction. When an exception is thrown from within a synchronized
statement, exit from the monitor entered prior to the execution of the synchronized
statement is achieved using the Java virtual machine's exception handling mechanism. See
Section 7.14 for more information on the use of the monitorenter and monitorexit
instructions.

multianewarray

Operation

Create new multidimensional array

Format

multianewarray indexbyte1 indexbyte2 dimensions

Forms

multianewarray = 197 (0xc5)

Operand Stack

..., count1, [count2, ...]  ..., arrayref
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Description

The dimensions operand is an unsigned byte that must be greater than or equal to 1. It
represents the number of dimensions of the array to be created. The operand stack must
contain dimensions values. Each such value represents the number of components in a
dimension of the array to be created, must be of type int, and must be nonnegative. The
count1 is the desired length in the first dimension, count2 in the second, etc.

All of the count values are popped off the operand stack. The unsigned indexbyte1 and
indexbyte2 are used to construct an index into the runtime constant pool of the current class
(§3.6), where the value of the index is (indexbyte1 << 8) | indexbyte2. The runtime constant
pool item at the index must be a symbolic reference to a class, array, or interface type. The
named class, array, or interface type is resolved (§5.4.3.1). The resulting entry must be an
array class type of dimensionality greater than or equal to dimensions.

A new multidimensional array of the array type is allocated from the garbage-collected heap.
If any count value is zero, no subsequent dimensions are allocated. The components of the
array in the first dimension are initialized to subarrays of the type of the second dimension,
and so on. The components of the last allocated dimension of the array are initialized to the
default initial value for the type of the components (§2.5.1). A reference arrayref to the
new array is pushed onto the operand stack.

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type, any of the
exceptions documented in Section 5.4.3.1 can be thrown.

Otherwise, if the current class does not have permission to access the element type of the
resolved array class, multianewarray throws an IllegalAccessError.

Runtime Exception

Otherwise, if any of the dimensions values on the operand stack are less than zero, the
multianewarray instruction throws a NegativeArraySizeException.

Notes

It may be more efficient to use newarray or anewarray when creating an array of a single
dimension.

The array class referenced via the runtime constant pool may have more dimensions than the
dimensions operand of the multianewarray instruction. In that case, only the first dimensions
of the dimensions of the array are created.
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new

Operation

Create new object

Format

new indexbyte1 indexbyte2

Forms

new = 187 (0xbb)

Operand Stack

...  ..., objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at the index must be a symbolic reference to a
class, array, or interface type. The named class, array, or interface type is resolved (§5.4.3.1)
and should result in a class type (it should not result in an array or interface type). Memory
for a new instance of that class is allocated from the garbage-collected heap, and the instance
variables of the new object are initialized to their default initial values (§2.5.1). The objectref,
a reference to the instance, is pushed onto the operand stack.

On successful resolution of the class, it is initialized (§5.5) if it has not already been
initialized.

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type, any of the
exceptions documented in Section 5.4.3.1 can be thrown.

Otherwise, if the symbolic reference to the class, array, or interface type resolves to an
interface or is an abstract class, new throws an InstantiationError.

Runtime Exception
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Otherwise, if execution of this new instruction causes initialization of the referenced class,
new may throw an Error as detailed in Section 2.17.5.

Note

The new instruction does not completely create a new instance; instance creation is not
completed until an instance initialization method has been invoked on the uninitialized
instance.

newarray

Operation

Create new array

Format

newarray atype

Forms

newarray = 188 (0xbc)

Operand Stack

..., count  ..., arrayref

Description

The count must be of type int. It is popped off the operand stack. The count represents the
number of elements in the array to be created.

The atype is a code that indicates the type of array to create. It must take one of the following
values:

Array Type atype
T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11
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A new array whose components are of type atype and of length count is allocated from the
garbage-collected heap. A reference arrayref to this new array object is pushed into the
operand stack. Each of the elements of the new array is initialized to the default initial value
for the type of the array (§2.5.1).

Runtime Exception

If count is less than zero, newarray throws a NegativeArraySizeException.

Notes

In Sun's implementation of the Java virtual machine, arrays of type boolean (atype is
T_BOOLEAN) are stored as arrays of 8-bit values and are manipulated using the baload and
bastore instructions, instructions that also access arrays of type byte. Other implementations
may implement packed boolean arrays; the baload and bastore instructions must still be
used to access those arrays.

nop

Operation

Do nothing

Format

nop

Forms

nop = 0 (0x0)

Operand Stack

No change

Description

Do nothing.
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pop

Operation

Pop the top operand stack value

Format

pop

Forms

pop = 87 (0x57)

Operand Stack

..., value  ...

Description

Pop the top value from the operand stack.

The pop instruction must not be used unless value is a value of a category 1 computational
type (§3.11.1).

pop2

Operation

Pop the top one or two operand stack values

Format

pop2

Forms

pop2 = 88 (0x58)

Operand Stack
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Form 1:

..., value2, value1  ...

where each of value1 and value2 is a value of a category 1 computational type (§3.11.1).

Form 2:

..., value  ...

where value is a value of a category 2 computational type (§3.11.1).

Description

Pop the top one or two values from the operand stack.

putfield

Operation

Set field in object

Format

putfield indexbyte1 indexbyte2

Forms

putfield = 181 (0xb5)

Operand Stack

..., objectref, value  ...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
field (§5.1), which gives the name and descriptor of the field as well as a symbolic reference
to the class in which the field is to be found. The class of objectref must not be an array. If the
field is protected (§4.6), and it is either a member of the current class or a member of a
superclass of the current class, then the class of objectref must be either the current class or a
subclass of the current class.

The referenced field is resolved (§5.4.3.2). The type of a value stored by a putfield
instruction must be compatible with the descriptor of the referenced field (§4.3.2). If the field
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descriptor type is boolean, byte, char, short, or int, then the value must be an int.
If the field descriptor type is float, long, or double, then the value must be a float,
long, or double, respectively. If the field descriptor type is a reference type, then the value
must be of a type that is assignment compatible (§2.6.7) with the field descriptor type. If the
field is final, it should be declared in the current class. Otherwise, an
IllegalAccessError is thrown.

The value and objectref are popped from the operand stack. The objectref must be of type
reference. The value undergoes value set conversion (§3.8.3), resulting in value', and the
referenced field in objectref is set to value'.

Linking Exceptions

During resolution of the symbolic reference to the field, any of the exceptions pertaining to
field resolution documented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is a static field, putfield throws an
IncompatibleClassChangeError.

Otherwise, if the field is final, it must be declared in the current class. Otherwise, an
IllegalAccessError is thrown.

Runtime Exception

Otherwise, if objectref is null, the putfield instruction throws a
NullPointerException.

putstatic

Operation

Set static field in class

Format

putstatic indexbyte1 indexbyte2

Forms

putstatic = 179 (0xb3)

Operand Stack

..., value  ...
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Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the runtime
constant pool of the current class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a symbolic reference to a
field (§5.1), which gives the name and descriptor of the field as well as a symbolic reference
to the class or interface in which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field the class or interface that declared the resolved field is
initialized (§5.5) if that class or interface has not already been initialized.

The type of a value stored by a putstatic instruction must be compatible with the descriptor
of the referenced field (§4.3.2). If the field descriptor type is boolean, byte, char,
short, or int, then the value must be an int. If the field descriptor type is float, long,
or double, then the value must be a float, long, or double, respectively. If the field
descriptor type is a reference type, then the value must be of a type that is assignment
compatible (§2.6.7) with the field descriptor type. If the field is final, it should be declared
in the current class. Otherwise, an IllegalAccessError is thrown.

The value is popped from the operand stack and undergoes value set conversion (§3.8.3),
resulting in value'. The class field is set to value'.

Linking Exceptions

During resolution of the symbolic reference to the class or interface field, any of the
exceptions pertaining to field resolution documented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is not a static (class) field or an interface field, putstatic
throws an IncompatibleClassChangeError.

Otherwise, if the field is final, it must be declared in the current class. Otherwise, an
IllegalAccessError is thrown.

Runtime Exception

Otherwise, if execution of this putstatic instruction causes initialization of the referenced
class or interface, putstatic may throw an Error as detailed in Section 2.17.5.

Notes

A putstatic instruction may be used only to set the value of an interface field on the
initialization of that field. Interface fields may be assigned to only once, on execution of an
interface variable initialization expression when the interface is initialized (§2.17.4).
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ret

Operation

Return from subroutine

Format

ret index

Forms

ret = 169 (0xa9)

Operand Stack

No change

Description

The index is an unsigned byte between 0 and 255, inclusive. The local variable at index in
the current frame (§3.6) must contain a value of type returnAddress. The contents of the
local variable are written into the Java virtual machine's pc register, and execution continues
there.

Notes

The ret instruction is used with jsr or jsr_w instructions in the implementation of the
finally clauses of the Java programming language (see Section 7.13, "Compiling
finally"). Note that jsr pushes the address onto the operand stack and ret gets it out of a
local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return instruction
returns control from a method to its invoker, without passing any value back to the invoker.

The ret opcode can be used in conjunction with the wide instruction to access a local variable
using a two-byte unsigned index.
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return

Operation

Return void from method

Format

return

Forms

return = 177 (0xb1)

Operand Stack

...  [empty]

Description

The current method must have return type void. If the current method is a
synchronized method, the monitor acquired or reentered on invocation of the method is
released or exited (respectively) as if by execution of a monitorexit instruction. If no
exception is thrown, any values on the operand stack of the current frame (§3.6) are
discarded.

The interpreter then returns control to the invoker of the method, reinstating the frame of the
invoker.

Runtime Exceptions

If the current method is a synchronized method and the current thread is not the owner
of the monitor acquired or reentered on invocation of the method, return throws an
IllegalMonitorStateException. This can happen, for example, if a
synchronized method contains a monitorexit instruction, but no monitorenter instruction,
on the object on which the method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules on structured use of
locks described in Section 8.13 and if the first of those rules is violated during invocation of
the current method, then return throws an IllegalMonitorStateException.
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saload

Operation

Load short from array

Format

saload

Forms

saload = 53 (0x35)

Operand Stack

..., arrayref, index  ..., value

Description

The arrayref must be of type reference and must refer to an array whose components are
of type short. The index must be of type int. Both arrayref and index are popped from the
operand stack. The component of the array at index is retrieved and sign-extended to an int
value. That value is pushed onto the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the saload
instruction throws an ArrayIndexOutOfBoundsException.

sastore

Operation

Store into short array

Format

sastore

The Java Virtual Machine Instruction Set

261



Forms

sastore = 86 (0x56)

Operand Stack

..., array, index, value  ...

Description

The arrayref must be of type reference and must refer to an array whose components are
of type short. Both index and value must be of type int. The arrayref, index, and value are
popped from the operand stack. The int value is truncated to a short and stored as the
component of the array indexed by index.

Runtime Exceptions

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the sastore
instruction throws an ArrayIndexOutOfBoundsException.

sipush

Operation

Push short

Format

sipush byte1 byte2

Forms

sipush = 17 (0x11)

Operand Stack

...  ..., value

Description

The immediate unsigned byte1 and byte2 values are assembled into an intermediate short
where the value of the short is (byte1 << 8) | byte2. The intermediate value is then
sign-extended to an int value. That value is pushed onto the operand stack.
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swap

Operation

Swap the top two operand stack values

Format

swap

Forms

swap = 95 (0x5f)

Operand Stack

..., value2, value1  ..., value1, value2

Description

Swap the top two values on the operand stack.

The swap instruction must not be used unless value1 and value2 are both values of a category
1 computational type (§3.11.1).

Notes

The Java virtual machine does not provide an instruction implementing a swap on operands
of category 2 computational types.
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tableswitch

Operation

Access jump table by index and jump

Format

tableswitch defaultbyte1 defaultbyte2 defaultbyte3 defaultbyte4 lowbyte1 lowbyte2 lowbyte3
lowbyte4 highbyte1 highbyte2 highbyte3 highbyte4 jump offsets...

Forms

tableswitch = 170 (0xaa)

Operand Stack

..., index  ...

Description

A tableswitch is a variable-length instruction. Immediately after the tableswitch opcode,
between 0 and 3 null bytes (zeroed bytes, not the null object) are inserted as padding. The
number of null bytes is chosen so that the following byte begins at an address that is a
multiple of 4 bytes from the start of the current method (the opcode of its first instruction).
Immediately after the padding follow bytes constituting three signed 32-bit values: default,
low, and high. Immediately following those bytes are bytes constituting a series of high - low
+ 1 signed 32-bit offsets. The value low must be less than or equal  to high.  The high - low +
1  signed 32-bit  offsets  are treated as a 0-based jump table. Each of these signed 32-bit
values is constructed as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the operand stack. If index is less than
low or index is greater than high, then a target address is calculated by adding default to the
address of the opcode of this tableswitch instruction. Otherwise, the offset at position index -
low of the jump table is extracted. The target address is calculated by adding that offset to the
address of the opcode of this tableswitch instruction. Execution then continues at the target
address.

The target address that can be calculated from each jump table offset, as well as the ones that
can be calculated from default, must be the address of an opcode of an instruction within the
method that contains this tableswitch instruction.

Notes
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The alignment required of the 4-byte operands of the tableswitch instruction guarantees
4-byte alignment of those operands if and only if the method that contains the tableswitch
starts on a 4-byte boundary.
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wide

Operation

Extend local variable index by additional bytes

Format 1

wide <opcode> indexbyte1 indexbyte2

where <opcode> is one of iload, fload, aload, lload, dload, istore, fstore, astore, lstore,
dstore, or ret

Format 2

wide iinc indexbyte1 indexbyte2 constbyte1 constbyte2

Forms

wide = 196 (0xc4)

Operand Stack

Same as modified instruction

Description

The wide instruction modifies the behavior of another instruction. It takes one of two
formats, depending on the instruction being modified. The first form of the wide instruction
modifies one of the instructions iload, fload, aload, lload, dload, istore, fstore, astore, lstore,
dstore, or ret. The second form applies only to the iinc instruction.

In either case, the wide opcode itself is followed in the compiled code by the opcode of the
instruction wide modifies. In either form, two unsigned bytes indexbyte1 and indexbyte2
follow the modified opcode and are assembled into a 16-bit unsigned index to a local variable
in the current frame (§3.6), where the value of the index is

(indexbyte1 << 8) | indexbyte2. The calculated index must be an index into the local variable
array of the current frame. Where the wide instruction modifies an lload, dload, lstore, or
dstore instruction, the index following the calculated index (index + 1) must also be an index
into the local variable array. In the second form, two immediate unsigned bytes constbyte1
and constbyte2 follow indexbyte1 and indexbyte2 in the code stream. Those bytes are also
assembled into a signed 16-bit constant, where the constant is (constbyte1 << 8) | constbyte2.
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The widened bytecode operates as normal, except for the use of the wider index and, in the
case of the second form, the larger increment range.

Notes

Although we say that wide "modifies the behavior of another instruction," the wide
instruction effectively treats the bytes constituting the modified instruction as operands,
denaturing the embedded instruction in the process. In the case of a modified iinc instruction,
one of the logical operands of the iinc is not even at the normal offset from the opcode. The
embedded instruction must never be executed directly; its opcode must never be the target of
any control transfer instruction.
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CHAPTER 7

Compiling for the Java Virtual Machine

The Java virtual machine is designed to support the Java programming language. Sun's JDK releases and Java
2 SDK contain both a compiler from source code written in the Java programming language to the instruction
set of the Java virtual machine, and a runtime system that implements the Java virtual machine itself.
Understanding how one compiler utilizes the Java virtual machine is useful to the prospective compiler writer,
as well as to one trying to understand the Java virtual machine itself.

Although this chapter concentrates on compiling source code written in the Java programming language, the
Java virtual machine does not assume that the instructions it executes were generated from such code. While
there have been a number of efforts aimed at compiling other languages to the Java virtual machine, the
current version of the Java virtual machine was not designed to support a wide range of languages. Some
languages may be hosted fairly directly by the Java virtual machine. Other languages may be implemented
only inefficiently.

Note that the term "compiler" is sometimes used when referring to a translator from the instruction set of a
Java virtual machine to the instruction set of a specific CPU. One example of such a translator is a just-in-time
(JIT) code generator, which generates platform-specific instructions only after Java virtual machine code has
been loaded. This chapter does not address issues associated with code generation, only those associated with
compiling source code written in the Java programming language to Java virtual machine instructions.

7.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated listings of the Java virtual
machine code that the javac compiler in Sun's JDK release 1.0.2 generates for the examples. The Java
virtual machine code is written in the informal "virtual machine assembly language" output by Sun's javap
utility, distributed with the JDK software and the Java 2 SDK. You can use javap to generate additional
examples of compiled methods.

The format of the examples should be familiar to anyone who has read assembly code. Each instruction takes
the form

<index> <opcode> [<operand1> [<operand2>...]] [<comment>]

The <index> is the index of the opcode of the instruction in the array that contains the bytes of Java virtual
machine code for this method. Alternatively, the <index> may be thought of as a byte offset from the
beginning of the method. The <opcode> is the mnemonic for the instruction's opcode, and the zero or more
<operandN> are the operands of the instruction. The optional <comment> is given in end-of-line comment
syntax:

8       bipush 100              // Push int constant 100
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Some of the material in the comments is emitted by javap; the rest is supplied by the authors. The <index>
prefacing each instruction may be used as the target of a control transfer instruction. For instance, a goto 8
instruction transfers control to the instruction at index 8. Note that the actual operands of Java virtual machine
control transfer instructions are offsets from the addresses of the opcodes of those instructions; these operands
are displayed by javap (and are shown in this chapter) as more easily read offsets into their methods.

We preface an operand representing a runtime constant pool index with a hash sign and follow the instruction
by a comment identifying the runtime constant pool item referenced, as in

  10   ldc #1                   // Push float constant 100.0

or

   9   invokevirtual #4         // Method Example.addTwo(II)I

For the purposes of this chapter, we do not worry about specifying details such as operand sizes.

7.2 Use of Constants, Local Variables, and Control
Constructs

Java virtual machine code exhibits a set of general characteristics imposed by the Java virtual machine's
design and use of types. In the first example we encounter many of these, and we consider them in some
detail.

The spin method simply spins around an empty for loop 100 times:

void spin() {
   int i;
   for (i = 0; i < 100; i++) {
       ;                       // Loop body is empty
   }

}

A compiler might compile spin to

Method void spin()
   0    iconst_0                // Push int constant 0
   1    istore_1                // Store into local variable 1 (i=0)
   2    goto 8                  // First time through don't increment
   5    iinc 1 1                // Increment local variable 1 by 1 (i++)
   8    iload_1                 // Push local variable 1 (i)
   9    bipush 100              // Push int constant 100
  11    if_icmplt 5             // Compare and loop if less than (i < 100)
  14    return                  // Return void when done

The Java virtual machine is stack-oriented, with most operations taking one or more operands from the
operand stack of the Java virtual machine's current frame or pushing results back onto the operand stack. A
new frame is created each time a method is invoked, and with it is created a new operand stack and set of
local variables for use by that method (see Section 3.6, "Frames"). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of control, corresponding to
many nested method invocations. Only the operand stack in the current frame is active.

The instruction set of the Java virtual machine distinguishes operand types by using distinct bytecodes for
operations on its various data types. The method spin operates only on values of type int. The instructions
in its compiled code chosen to operate on typed data (iconst_0, istore_1, iinc, iload_1, if_icmplt) are all
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specialized for type int.

The two constants in spin, 0 and 100, are pushed onto the operand stack using two different instructions.
The 0 is pushed using an iconst_0 instruction, one of the family of iconst_<i> instructions. The 100 is pushed
using a bipush instruction, which fetches the value it pushes as an immediate operand.

The Java virtual machine frequently takes advantage of the likelihood of certain operands (int constants -1,
0, 1, 2, 3, 4 and 5 in the case of the iconst_<i> instructions) by making those operands implicit in the opcode.
Because the iconst_0 instruction knows it is going to push an int 0, iconst_0 does not need to store an
operand to tell it what value to push, nor does it need to fetch or decode an operand. Compiling the push of 0
as bipush 0 would have been correct, but would have made the compiled code for spin one byte longer. A
simple virtual machine would have also spent additional time fetching and decoding the explicit operand each
time around the loop. Use of implicit operands makes compiled code more compact and efficient.

The int i in spin is stored as Java virtual machine local variable 1. Because most Java virtual machine
instructions operate on values popped from the operand stack rather than directly on local variables,
instructions that transfer values between local variables and the operand stack are common in code compiled
for the Java virtual machine. These operations also have special support in the instruction set. In spin, values
are transferred to and from local variables using the istore_1 and iload_1 instructions, each of which implicitly
operates on local variable 1. The istore_1 instruction pops an int from the operand stack and stores it in local
variable 1. The iload_1 instruction pushes the value in local variable 1 onto the operand stack.

The use (and reuse) of local variables is the responsibility of the compiler writer. The specialized load and
store instructions should encourage the compiler writer to reuse local variables as much as is feasible. The
resulting code is faster, more compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specially by the Java virtual machine. The
iinc instruction increments the contents of a local variable by a one-byte signed value. The iinc instruction in
spin increments the first local variable (its first operand) by 1 (its second operand). The iinc instruction is
very handy when implementing looping constructs.

The for loop of spin is accomplished mainly by these instructions:

   5    iinc 1 1                // Increment local 1 by 1 (i++)
   8    iload_1                 // Push local variable 1 (i)
   9    bipush 100              // Push int constant 100
  11    if_icmplt 5             // Compare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an int, then the if_icmplt instruction
pops that value off the operand stack and compares it against i. If the comparison succeeds (the variable i is
less than 100), control is transferred to index 5 and the next iteration of the for loop begins. Otherwise,
control passes to the instruction following the if_icmplt.

If the spin example had used a data type other than int for the loop counter, the compiled code would
necessarily change to reflect the different data type. For instance, if instead of an int the spin example uses
a double, as shown,

void dspin() {
   double i;
   for (i = 0.0; i < 100.0; i++) {
       ;                       // Loop body is empty
   }

}

the compiled code is

Method void dspin()
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   0    dconst_0                // Push double constant 0.0
   1    dstore_1                // Store into local variables 1 and 2
   2    goto 9                  // First time through don't increment
   5    dload_1                 // Push local variables 1 and 2 
   6    dconst_1                // Push double constant 1.0
   7    dadd                    // Add; there is no dinc instruction
   8    dstore_1                // Store result in local variables 1 and 2
   9    dload_1                 // Push local variables 1 and 2 
  10    ldc2_w #4               // Push double constant 100.0
  13    dcmpg                   // There is no if_dcmplt instruction
  14    iflt 5                  // Compare and loop if less than (i < 100.0)
  17    return                  // Return void when done

The instructions that operate on typed data are now specialized for type double. (The ldc2_w instruction
will be discussed later in this chapter.)

Recall that double values occupy two local variables, although they are only accessed using the lesser index
of the two local variables. This is also the case for values of type long. Again for example,

double doubleLocals(double d1, double d2) {
   return d1 + d2;

}

becomes

Method double doubleLocals(double,double)
   0    dload_1                 // First argument in local variables 1 and 2
   1    dload_3                 // Second argument in local variables 3 and 4
   2    dadd                    
   3    dreturn

Note that local variables of the local variable pairs used to store double values in doubleLocals must
never be manipulated individually.

The Java virtual machine's opcode size of 1 byte results in its compiled code being very compact. However,
1-byte opcodes also mean that the Java virtual machine instruction set must stay small. As a compromise, the
Java virtual machine does not provide equal support for all data types: it is not completely orthogonal (see
Table 3.2, "Type support in the Java virtual machine instruction set").

For example, the comparison of values of type int in the for statement of example spin can be
implemented using a single if_icmplt instruction; however, there is no single instruction in the Java virtual
machine instruction set that performs a conditional branch on values of type double. Thus, dspin must
implement its comparison of values of type double using a dcmpg instruction followed by an iflt instruction.

The Java virtual machine provides the most direct support for data of type int. This is partly in anticipation
of efficient implementations of the Java virtual machine's operand stacks and local variable arrays. It is also
motivated by the frequency of int data in typical programs. Other integral types have less direct support.
There are no byte, char, or short versions of the store, load, or add instructions, for instance. Here is the
spin example written using a short:

void sspin() {
   short i;
   for (i = 0; i < 100; i++) {
       ;                       // Loop body is empty
   }

}

It must be compiled for the Java virtual machine, as follows, using instructions operating on another type,
most likely int, converting between short and int values as necessary to ensure that the results of
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operations on short data stay within the appropriate range:

Method void sspin()
   0    iconst_0
   1    istore_1
   2    goto 10
   5    iload_1                 // The short is treated as though an int
   6    iconst_1
   7    iadd
   8    i2s                     // Truncate int to short
   9    istore_1
  10    iload_1
  11    bipush 100
  13    if_icmplt 5
  16    return

The lack of direct support for byte, char, and short types in the Java virtual machine is not particularly
painful, because values of those types are internally promoted to int (byte and short are sign-extended to
int, char is zero-extended). Operations on byte, char, and short data can thus be done using int
instructions. The only additional cost is that of truncating the values of int operations to valid ranges.

The long and floating-point types have an intermediate level of support in the Java virtual machine, lacking
only the full complement of conditional control transfer instructions.

7.3 Arithmetic

The Java virtual machine generally does arithmetic on its operand stack. (The exception is the iinc instruction,
which directly increments the value of a local variable .) For instance, the align2grain method aligns an
int value to a given power of 2:

int align2grain(int i, int grain) {
   return ((i + grain-1) & ~(grain-1));

}

Operands for arithmetic operations are popped from the operand stack, and the results of operations are
pushed back onto the operand stack. Results of arithmetic subcomputations can thus be made available as
operands of their nesting computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

   5    iload_2                 // Push grain
   6    iconst_1                // Push int constant 1
   7    isub                    // Subtract; push result 
   8    iconst_m1               // Push int constant -1
   9    ixor                    // Do XOR; push result 

First grain  -  1 is calculated using the contents of local variable 2 and an immediate int value 1. These
operands are popped from the operand stack and their difference pushed back onto the operand stack. The
difference is thus immediately available for use as one operand of the ixor instruction. (Recall that ~x ==
-1^x.) Similarly, the result of the ixor instruction becomes an operand for the subsequent iand instruction.

The code for the entire method follows:

Method int align2grain(int,int)
   0    iload_1
   1    iload_2
   2    iadd
   3    iconst_1
   4    isub
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   5    iload_2
   6    iconst_1
   7    isub
   8    iconst_m1
   9    ixor
  10    iand
  11    ireturn

7.4 Accessing the Runtime Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed via the runtime constant pool of
the current class. Object access is considered later (§7.8). Data of types int, long, float, and double, as
well as references to instances of class String, are managed using the ldc, ldc_w, and ldc2_w instructions.

The ldc and ldc_w instructions are used to access values in the runtime constant pool (including instances of
class String) of types other than double and long. The ldc_w instruction is used in place of ldc only
when there is a large number of runtime constant pool items and a larger index is needed to access an item.
The ldc2_w instruction is used to access all values of types double and long; there is no non-wide variant.

Integral constants of types byte, char, or short, as well as small int values, may be compiled using the
bipush, sipush, or iconst_<i> instructions, as seen earlier (§7.2). Certain small floating-point constants may be
compiled using the fconst_<f> and dconst_<d> instructions.

In all of these cases, compilation is straightforward. For instance, the constants for

void useManyNumeric() {
   int i = 100;
   int j = 1000000;
   long l1 = 1;
   long l2 = 0xffffffff;
   double d = 2.2;
   ...do some calculations...

}

are set up as follows:

Method void useManyNumeric()
   0    bipush 100              // Push a small int with bipush
   2    istore_1
   3    ldc #1                  // Push int constant 1000000; a larger int
                                // value uses ldc
   5    istore_2
   6    lconst_1                // A tiny long value uses short, fast lconst_1
   7    lstore_3
   8    ldc2_w #6               // Push long 0xffffffff (that is, an int -1); any
                                // long constant value can be pushed using ldc2_w
  11    lstore 5
  13    ldc2_w #8               // Push double constant 2.200000; uncommon
                                // double values are also pushed using ldc2_w
  16    dstore 7
...do those calculations...

7.5 More Control Examples

Compilation of for statements was shown in an earlier section (§7.2). Most of the Java programming
language's other control constructs (if-then-else, do, while, break, and continue) are also
compiled in the obvious ways. The compilation of switch statements is handled in a separate section
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(Section 7.10, "Compiling Switches"), as are the compilation of exceptions (Section 7.12, "Throwing and
Handling Exceptions") and the compilation of finally clauses (Section 7.13, "Compiling finally ").

As a further example, a while loop is compiled in an obvious way, although the specific control transfer
instructions made available by the Java virtual machine vary by data type. As usual, there is more support for
data of type int, for example:

void whileInt() {
   int i = 0;
   while (i < 100) {
       i++;
   }

}

is compiled to

Method void whileInt()
   0    iconst_0
   1    istore_1
   2    goto 8
   5    iinc 1 1
   8    iload_1
   9    bipush 100
  11    if_icmplt 5
  14    return

Note that the test of the while statement (implemented using the if_icmplt instruction) is at the bottom of
the Java virtual machine code for the loop. (This was also the case in the spin examples earlier.) The test
being at the bottom of the loop forces the use of a goto instruction to get to the test prior to the first iteration
of the loop. If that test fails, and the loop body is never entered, this extra instruction is wasted. However,
while loops are typically used when their body is expected to be run, often for many iterations. For
subsequent iterations, putting the test at the bottom of the loop saves a Java virtual machine instruction each
time around the loop: if the test were at the top of the loop, the loop body would need a trailing goto
instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but must use the instructions
available for those data types. This leads to somewhat less efficient code because more Java virtual machine
instructions are needed, for example:

void whileDouble() {
   double i = 0.0;
   while (i < 100.1) {
       i++;
   }

}

is compiled to

Method void whileDouble()
   0    dconst_0
   1    dstore_1
   2    goto 9
   5    dload_1
   6    dconst_1
   7    dadd
   8    dstore_1
   9    dload_1
  10    ldc2_w #4               // Push double constant 100.1
  13    dcmpg                   // To do the compare and branch we have to use...
  14    iflt 5                  // ...two instructions
  17    return
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Each floating-point type has two comparison instructions: fcmpl and fcmpg for type float, and dcmpl and
dcmpg for type double. The variants differ only in their treatment of NaN. NaN is unordered, so all
floating-point comparisons fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result whether the comparison fails on
non-NaN values or encounters a NaN.

For instance:

int lessThan100(double d) {
   if (d < 100.0) {
       return 1;                               
   } else {
       return -1;                              
   }

}

compiles to

Method int lessThan100(double)
   0    dload_1
   1    ldc2_w #4               // Push double constant 100.0
   4    dcmpg                   // Push 1 if d is NaN or d \> 100.0;
                                // push 0 if d == 100.0
   5    ifge 10                 // Branch on 0 or 1
   8    iconst_1
   9    ireturn
  10    iconst_m1
  11    ireturn

If d is not NaN and is less than 100.0, the dcmpg instruction pushes an int -1 onto the operand stack, and
the ifge instruction does not branch. Whether d is greater than 100.0 or is NaN, the dcmpg instruction
pushes an int 1 onto the operand stack, and the ifge branches. If d is equal to 100.0, the dcmpg instruction
pushes an int 0 onto the operand stack, and the ifge branches.

The dcmpl instruction achieves the same effect if the comparison is reversed:

int greaterThan100(double d) {
   if (d > 100.0) {
       return 1;                       
   } else {
       return -1;                      
   }

}

becomes

Method int greaterThan100(double)
   0    dload_1
   1    ldc2_w #4               // Push double constant 100.0
   4    dcmpl                   // Push -1 if d is Nan or d < 100.0;
                                // push 0 if d == 100.0
   5    ifle 10                 // Branch on 0 or -1
   8    iconst_1
   9    ireturn
  10    iconst_m1
  11    ireturn

Once again, whether the comparison fails on a non-NaN value or because it is passed a NaN, the dcmpl
instruction pushes an int value onto the operand stack that causes the ifle to branch. If both of the dcmp
instructions did not exist, one of the example methods would have had to do more work to detect NaN.

Compiling for the Java Virtual Machine

276



7.6 Receiving Arguments

If n arguments are passed to an instance method, they are received, by convention, in the local variables
numbered 1 through n of the frame created for the new method invocation. The arguments are received in the
order they were passed. For example:

int addTwo(int i, int j) {
   return i + j;

}

compiles to

Method int addTwo(int,int)
   0    iload_1                 // Push value of local variable 1 (i)
   1    iload_2                 // Push value of local variable 2 (j)
   2    iadd                    // Add; leave int result on operand stack
   3    ireturn                 // Return int result

By convention, an instance method is passed a reference to its instance in local variable 0. In the Java
programming language the instance is accessible via the this keyword.

Class (static) methods do not have an instance, so for them this use of local variable zero is unnecessary.
A class method starts using local variables at index zero. If the addTwo method were a class method, its
arguments would be passed in a similar way to the first version:

static int addTwoStatic(int i, int j) {
   return i + j;

}

compiles to

Method int addTwoStatic(int,int)
   0    iload_0
   1    iload_1
   2    iadd
   3    ireturn

The only difference is that the method arguments appear starting in local variable 0 rather than 1.

7.7 Invoking Methods

The normal method invocation for a instance method dispatches on the runtime type of the object. (They are
virtual, in C++ terms.) Such an invocation is implemented using the invokevirtual instruction, which takes as
its argument an index to a runtime constant pool entry giving the fully qualified name of the class type of the
object, the name of the method to invoke, and that method's descriptor (§4.3.3). To invoke the addTwo
method, defined earlier as an instance method, we might write

int add12and13() {
   return addTwo(12, 13);

}

This compiles to

Method int add12and13()
   0    aload_0                         // Push local variable 0 (this)
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   1    bipush 12                       // Push int constant 12
   3    bipush 13                       // Push int constant 13
   5    invokevirtual #4                // Method Example.addtwo(II)I
   8    ireturn                         // Return int on top of operand stack; it is
                                        // the int result of addTwo()

The invocation is set up by first pushing a reference to the current instance, this, onto the operand
stack. The method invocation's arguments, int values 12 and 13, are then pushed. When the frame for the
addTwo method is created, the arguments passed to the method become the initial values of the new frame's
local variables. That is, the reference for this and the two arguments, pushed onto the operand stack by
the invoker, will become the initial values of local variables 0, 1, and 2 of the invoked method.

Finally, addTwo is invoked. When it returns, its int return value is pushed onto the operand stack of the
frame of the invoker, the add12and13 method. The return value is thus put in place to be immediately
returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13. The ireturn instruction
takes the int value returned by addTwo, on the operand stack of the current frame, and pushes it onto the
operand stack of the frame of the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java virtual machine provides distinct return instructions for many of its numeric and
reference data types, as well as a return instruction for methods with no return value. The same set of
return instructions is used for all varieties of method invocations.

The operand of the invokevirtual instruction (in the example, the runtime constant pool index #4) is not the
offset of the method in the class instance. The compiler does not know the internal layout of a class instance.
Instead, it generates symbolic references to the methods of an instance, which are stored in the runtime
constant pool. Those runtime constant pool items are resolved at run time to determine the actual method
location. The same is true for all other Java virtual machine instructions that access class instances.

Invoking addTwoStatic, a class (static) variant of addTwo, is similar, as shown:

int add12and13() {
   return addTwoStatic(12, 13);

}

although a different Java virtual machine method invocation instruction is used:

Method int add12and13()
   0    bipush 12
   2    bipush 13
   4    invokestatic #3                 // Method Example.addTwoStatic(II)I
   7    ireturn

Compiling an invocation of a class (static) method is very much like compiling an invocation of an
instance method, except this is not passed by the invoker. The method arguments will thus be received
beginning with local variable 0 (see Section 7.6, "Receiving Arguments"). The invokestatic instruction is
always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization methods (see Section 7.8,
"Working with Class Instances"). It is also used when invoking methods in the superclass (super) and when
invoking private methods. For instance, given classes Near and Far declared as

class Near {
   int it;
   public int getItNear() {
       return getIt();
   }
   private int getIt() {
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       return it;
   }

}
class Far extends Near {
   int getItFar() {
       return super.getItNear();
   }

}

the method Near.getItNear (which invokes a private method) becomes

Method int getItNear()
   0    aload_0
   1    invokespecial #5                // Method Near.getIt()I
   4    ireturn

The method Far.getItFar (which invokes a superclass method) becomes

Method int getItFar()
   0    aload_0
   1    invokespecial #4                // Method Near.getItNear()I
   4    ireturn

Note that methods called using the invokespecial instruction always pass this to the invoked method as its
first argument. As usual, it is received in local variable 0.

7.8 Working with Class Instances

Java virtual machine class instances are created using the Java virtual machine's new instruction. Recall that at
the level of the Java virtual machine, a constructor appears as a method with the compiler-supplied name
<init>. This specially named method is known as the instance initialization method (§3.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist for a given class. Once the
class instance has been created and its instance variables, including those of the class and all of its
superclasses, have been initialized to their default values, an instance initialization method of the new class
instance is invoked. For example:

Object create() {
   return new Object();

}

compiles to

Method java.lang.Object create()
   0    new #1                          // Class java.lang.Object
   3    dup
   4    invokespecial #4                // Method java.lang.Object.<init>()V
   7    areturn

Class instances are passed and returned (as reference types) very much like numeric values, although
type reference has its own complement of instructions, for example:

int i;                                  // An instance variable
MyObj example() {
   MyObj o = new MyObj();
   return silly(o);

}
MyObj silly(MyObj o) {
   if (o != null) {
       return o;
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   } else {
       return o;
   }

}

becomes

Method MyObj example()
   0    new #2                          // Class MyObj
   3    dup
   4    invokespecial #5                // Method MyObj.<init>()V
   7    astore_1
   8    aload_0
   9    aload_1
  10    invokevirtual #4                                
                // Method Example.silly(LMyObj;)LMyObj;
  13    areturn
Method MyObj silly(MyObj)
   0    aload_1
   1    ifnull 6
   4    aload_1
   5    areturn
   6    aload_1
   7    areturn

The fields of a class instance (instance variables) are accessed using the getfield and putfield instructions. If i
is an instance variable of type int, the methods setIt and getIt, defined as

void setIt(int value) {
   i = value;

}
int getIt() {
   return i;

}

become

Method void setIt(int)
   0    aload_0
   1    iload_1
   2    putfield #4                     // Field Example.i I
   5    return
Method int getIt()
   0    aload_0
   1    getfield #4                     // Field Example.i I
   4    ireturn

As with the operands of method invocation instructions, the operands of the putfield and getfield instructions
(the runtime constant pool index #4) are not the offsets of the fields in the class instance. The compiler
generates symbolic references to the fields of an instance, which are stored in the runtime constant pool.
Those runtime constant pool items are resolved at run time to determine the location of the field within the
referenced object.

7.9 Arrays

Java virtual machine arrays are also objects. Arrays are created and manipulated using a distinct set of
instructions. The newarray instruction is used to create an array of a numeric type. The  code

void createBuffer() {
   int buffer[];
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   int bufsz = 100;
   int value = 12;
   buffer = new int[bufsz];
   buffer[10] = value;
   value = buffer[11];

}

might be compiled to

Method void createBuffer()
   0    bipush 100              // Push int constant 100 (bufsz)
   2    istore_2                // Store bufsz in local variable 2
   3    bipush 12               // Push int constant 12 (value)
   5    istore_3                // Store value in local variable 3
   6    iload_2                 // Push bufsz...
   7    newarray int            // ...and create new array of int of that length
   9    astore_1                // Store new array in buffer
  10    aload_1                 // Push buffer
  11    bipush 10               // Push int constant 10
  13    iload_3                 // Push value
  14    iastore                 // Store value at buffer[10]
  15    aload_1                 // Push buffer
  16    bipush 11               // Push int constant 11
  18    iaload                  // Push value at buffer[11]...
   19   istore_3                // ...and store it in value
  20    return

The anewarray instruction is used to create a one-dimensional array of object references, for example:

void createThreadArray() {
   Thread threads[];
   int count = 10;
   threads = new Thread[count];
   threads[0] = new Thread();

}

becomes

Method void createThreadArray()
   0    bipush 10                       // Push int constant 10
   2    istore_2                        // Initialize count to that
   3    iload_2                         // Push count, used by anewarray
   4    anewarray class #1              // Create new array of class Thread
   7    astore_1                        // Store new array in threads
   8    aload_1                         // Push value of threads
   9    iconst_0                        // Push int constant 0
  10    new #1                          // Create instance of class Thread
  13    dup                             // Make duplicate reference...
  14    invokespecial #5                // ...to pass to instance initialization method
                                        // Method java.lang.Thread.<init>()V
  17    aastore                         // Store new Thread in array at 0
  18    return

The anewarray instruction can also be used to create the first dimension of a multidimensional array.
Alternatively, the multianewarray instruction can be used to create several dimensions at once. For example,
the three-dimensional array:

int[][][] create3DArray() {
   int grid[][][];
   grid = new int[10][5][];
   return grid;

}
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is created by

Method int create3DArray()[][][]
   0    bipush 10                       // Push int 10 (dimension one)
   2    iconst_5                        // Push int 5 (dimension two)
   3    multianewarray #1 dim #2        // Class [[[I, a three
                                        // dimensional int array;
                                        // only create first two 
                                        // dimensions
   7    astore_1                        // Store new array...
   8    aload_1                         // ...then prepare to return it
   9    areturn

The first operand of the multianewarray instruction is the runtime constant pool index to the array class type
to be created. The second is the number of dimensions of that array type to actually create. The
multianewarray instruction can be used to create all the dimensions of the type, as the code for
create3DArray shows. Note that the multidimensional array is just an object and so is loaded and returned
by an aload_1 and areturn instruction, respectively. For information about array class names, see Section
4.4.1.

All arrays have associated lengths, which are accessed via the arraylength instruction.

7.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch instructions. The tableswitch
instruction is used when the cases of the switch can be efficiently represented as indices into a table of
target offsets. The default target of the switch is used if the value of the expression of the switch falls
outside the range of valid indices. For instance,

int chooseNear(int i) {
   switch (i) {
       case 0:  return 0;
       case 1:  return 1;
       case 2:  return 2;
       default: return -1;
   }

}

compiles to

Method int chooseNear(int)
   0    iload_1                         // Push local variable 1 (argument i)
   1    tableswitch 0 to 2:             // Valid indices are 0 through 2
                0: 28                   // If i is 0, continue at 28
                1: 30                   // If i is 1, continue at 30
                2: 32                   // If i is 2, continue at 32
                default:34              // Otherwise, continue at 34
  28    iconst_0                        // i was 0; push int constant 0...
  29    ireturn                         // ...and return it
  30    iconst_1                        // i was 1; push int constant 1...
  31    ireturn                         // ...and return it
  32    iconst_2                        // i was 2; push int constant 2...
  33    ireturn                         // ...and return it
  34    iconst_m1                       // otherwise push int constant -1...
  35    ireturn                         // ...and return it

The Java virtual machine's tableswitch and lookupswitch instructions operate only on int data. Because
operations on byte, char, or short values are internally promoted to int, a switch whose expression
evaluates to one of those types is compiled as though it evaluated to type int. If the chooseNear method
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had been written using type short, the same Java virtual machine instructions would have been generated as
when using type int. Other numeric types must be narrowed to type int for use in a switch.

Where the cases of the switch are sparse, the table representation of the tableswitch instruction becomes
inefficient in terms of space. The lookupswitch instruction may be used instead. The lookupswitch instruction
pairs int keys (the values of the case labels) with target offsets in a table. When a lookupswitch instruction
is executed, the value of the expression of the switch is compared against the keys in the table. If one of the
keys matches the value of the expression, execution continues at the associated target offset. If no key
matches, execution continues at the default target. For instance, the compiled code for

int chooseFar(int i) {
   switch (i) {
       case -100: return -1;
       case 0:    return 0;
       case 100:  return 1;
       default:   return -1;
   }

}

looks just like the code for chooseNear, except for the use of the lookupswitch instruction:

Method int chooseFar(int)
   0    iload_1
   1    lookupswitch 3: 
                -100: 36
                0: 38
                100: 40
                default:42
  36    iconst_m1
  37    ireturn
  38    iconst_0
  39    ireturn
  40    iconst_1
  41    ireturn
  42    iconst_m1
  43    ireturn

The Java virtual machine specifies that the table of the lookupswitch instruction must be sorted by key so that
implementations may use searches more efficient than a linear scan. Even so, the lookupswitch instruction
must search its keys for a match rather than simply perform a bounds check and index into a table like
tableswitch. Thus, a tableswitch instruction is probably more efficient than a lookupswitch where space
considerations permit a choice.

7.11 Operations on the Operand Stack

The Java virtual machine has a large complement of instructions that manipulate the contents of the operand
stack as untyped values. These are useful because of the Java virtual machine's reliance on deft manipulation
of its operand stack. For instance,

public long nextIndex() { 
   return index++;

}
private long index = 0;

is compiled to

Method long nextIndex()
   0    aload_0                 // Push this
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   1    dup                     // Make a copy of it
   2    getfield #4             // One of the copies of this is consumed
                                // pushing long field index,
                                // above the original this
   5    dup2_x1                 // The long on top of the operand stack is 
                                // inserted into the operand stack below the 
                                // original this
   6    lconst_1                // Push long constant 1 
   7    ladd                    // The index value is incremented...
   8    putfield #4             // ...and the result stored back in the field
  11    lreturn                 // The original value of index is left on
                                // top of the operand stack, ready to be returned

Note that the Java virtual machine never allows its operand stack manipulation instructions to modify or break
up individual values on the operand stack.

7.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the throw keyword. Its compilation is simple:

void cantBeZero(int i) throws TestExc {
   if (i == 0) {
       throw new TestExc();
   }

}

becomes

Method void cantBeZero(int)
   0    iload_1                         // Push argument 1 (i)
   1    ifne 12                         // If i==0, allocate instance and throw
   4    new #1                          // Create instance of TestExc
   7    dup                             // One reference goes to the constructor
   8    invokespecial #7                // Method TestExc.<init>()V
  11    athrow                          // Second reference is thrown
  12    return                          // Never get here if we threw TestExc

Compilation of try-catch constructs is straightforward. For example,

void catchOne() {
   try {
       tryItOut();
   } catch (TestExc e) {
       handleExc(e);
   }

}

is compiled as

Method void catchOne()
   0    aload_0                         // Beginning of try block
   1    invokevirtual #6                // Method Example.tryItOut()V
   4    return                          // End of try block; normal return
   5    astore_1                        // Store thrown value in local variable 1
   6    aload_0                         // Push this
   7    aload_1                         // Push thrown value
   8    invokevirtual #5                // Invoke handler method: 
                                        // Example.handleExc(LTestExc;)V
  11    return                          // Return after handling TestExc
Exception table:
        From    To      Target          Type
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        0       4       5               Class TestExc

Looking more closely, the try block is compiled just as it would be if the try were not present:

Method void catchOne()
   0    aload_0                         // Beginning of try block
   1    invokevirtual #4                // Method Example.tryItOut()V
   4    return                          // End of try block; normal return

If no exception is thrown during the execution of the try block, it behaves as though the try were not there:
tryItOut is invoked and catchOne returns.

Following the try block is the Java virtual machine code that implements the single catch clause:

   5    astore_1                        // Store thrown value in local variable 1
   6    aload_0                         // Push this
   7    aload_1                         // Push thrown value
   8    invokevirtual #5                // Invoke handler method: 
                                        // Example.handleExc(LTestExc;)V
  11    return                          // Return after handling TestExc
Exception table:
        From    To      Target          Type
        0       4       5               Class TestExc

The invocation of handleExc, the contents of the catch clause, is also compiled like a normal method
invocation. However, the presence of a catch clause causes the compiler to generate an exception table
entry. The exception table for the catchOne method has one entry corresponding to the one argument (an
instance of class TestExc) that the catch clause of catchOne can handle. If some value that is an
instance of TestExc is thrown during execution of the instructions between indices 0 and 4 in catchOne,
control is transferred to the Java virtual machine code at index 5, which implements the block of the catch
clause. If the value that is thrown is not an instance of TestExc, the catch clause of catchOne cannot
handle it. Instead, the value is rethrown to the invoker of catchOne.

A try may have multiple catch clauses:

void catchTwo() {
   try {
       tryItOut();
   } catch (TestExc1 e) {
       handleExc(e);
   } catch (TestExc2 e) {
       handleExc(e);
   }

}

Multiple catch clauses of a given try statement are compiled by simply appending the Java virtual
machine code for each catch clause one after the other and adding entries to the exception table, as shown:

Method void catchTwo()
   0    aload_0                         // Begin try block
   1    invokevirtual #5                // Method Example.tryItOut()V
   4    return                          // End of try block; normal return
   5    astore_1                        // Beginning of handler for TestExc1;
                                        // Store thrown value in local variable 1
   6    aload_0                         // Push this
   7    aload_1                         // Push thrown value
   8    invokevirtual #7                // Invoke handler method:
                                        // Example.handleExc(LTestExc1;)V
  11    return                          // Return after handling TestExc1
  12    astore_1                        // Beginning of handler for TestExc2;
                                        // Store thrown value in local variable 1
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  13    aload_0                         // Push this
  14    aload_1                         // Push thrown value
  15    invokevirtual #7                // Invoke handler method:
                                        // Example.handleExc(LTestExc2;)V
  18    return                          // Return after handling TestExc2
Exception table:
        From    To      Target          Type
        0       4       5               Class TestExc1
        0       4       12              Class TestExc2

If during the execution of the try clause (between indices 0 and 4) a value is thrown that matches the
parameter of one or more of the catch clauses (the value is an instance of one or more of the parameters),
the first (innermost) such catch clause is selected. Control is transferred to the Java virtual machine code for
the block of that catch clause. If the value thrown does not match the parameter of any of the catch
clauses of catchTwo, the Java virtual machine rethrows the value without invoking code in any catch
clause of catchTwo.

Nested try-catch statements are compiled very much like a try statement with multiple catch clauses:

void nestedCatch() {
   try {
       try {
           tryItOut();
       } catch (TestExc1 e) {
           handleExc1(e);
       }
   } catch (TestExc2 e) {
       handleExc2(e);
   }

}

becomes

Method void nestedCatch()
   0    aload_0                         // Begin try block
   1    invokevirtual #8                // Method Example.tryItOut()V
   4    return                          // End of try block; normal return
   5    astore_1                        // Beginning of handler for TestExc1;
                                        // Store thrown value in local variable 1
   6    aload_0                         // Push this
   7    aload_1                         // Push thrown value
   8    invokevirtual #7                // Invoke handler method: 
                                        // Example.handleExc1(LTestExc1;)V
  11    return                          // Return after handling TestExc1
  12    astore_1                        // Beginning of handler for TestExc2;
                                        // Store thrown value in local variable 1
  13    aload_0                         // Push this
  14    aload_1                         // Push thrown value
  15    invokevirtual #6                // Invoke handler method:
                                        // Example.handleExc2(LTestExc2;)V
  18    return                          // Return after handling TestExc2
Exception table:
        From    To      Target          Type
        0       4       5               Class TestExc1
        0       12      12              Class TestExc2

The nesting of catch clauses is represented only in the exception table. When an exception is thrown, the
first (innermost) catch clause that contains the site of the exception and with a matching parameter is selected
to handle it. For instance, if the invocation of tryItOut (at index 1) threw an instance of TestExc1, it
would be handled by the catch clause that invokes handleExc1. This is so even though the exception
occurs within the bounds of the outer catch clause (catching TestExc2) and even though that outer
catch clause might otherwise have been able to handle the thrown value.
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As a subtle point, note that the range of a catch clause is inclusive on the "from" end and exclusive on the
"to" end (§4.7.3). Thus, the exception table entry for the catch clause catching TestExc1 does not cover
the return instruction at offset 4. However, the exception table entry for the catch clause catching
TestExc2 does cover the return instruction at offset 11. Return instructions within nested catch clauses
are included in the range of instructions covered by nesting catch clauses.

7.13 Compiling finally

Compilation of a try-finally statement is similar to that of try-catch. Prior to transferring control
outside the try statement, whether that transfer is normal or abrupt, because an exception has been thrown,
the finally clause must first be executed. For this simple example

void tryFinally() {
   try {
       tryItOut();
   } finally {
       wrapItUp();
   }

}

the compiled code is

Method void tryFinally()
   0    aload_0                         // Beginning of try block
   1    invokevirtual #6                // Method Example.tryItOut()V
   4    jsr 14                          // Call finally block
   7    return                          // End of try block
   8    astore_1                        // Beginning of handler for any throw
   9    jsr 14                          // Call finally block
  12    aload_1                         // Push thrown value
  13    athrow                          // ...and rethrow the value to the invoker
  14    astore_2                        // Beginning of finally block
  15    aload_0                         // Push this
  16    invokevirtual #5                // Method Example.wrapItUp()V
  19    ret 2                           // Return from finally block
Exception table:
        From    To      Target          Type
        0       4       8               any

There are four ways for control to pass outside of the try statement: by falling through the bottom of that
block, by returning, by executing a break or continue statement, or by raising an exception. If
tryItOut returns without raising an exception, control is transferred to the finally block using a jsr
instruction. The jsr 14 instruction at index 4 makes a "subroutine call" to the code for the finally block at
index 14 (the finally block is compiled as an embedded subroutine). When the finally block
completes, the ret 2 instruction returns control to the instruction following the jsr instruction at index 4.

In more detail, the subroutine call works as follows: The jsr instruction pushes the address of the following
instruction (return at index 7) onto the operand stack before jumping. The astore_2 instruction that is the jump
target stores the address on the operand stack into local variable 2. The code for the finally block (in this
case the aload_0 and invokevirtual instructions) is run. Assuming execution of that code completes normally,
the ret instruction retrieves the address from local variable 2 and resumes execution at that address. The return
instruction is executed, and tryFinally returns normally.

A try statement with a finally clause is compiled to have a special exception handler, one that can
handle any exception thrown within the try statement. If tryItOut throws an exception, the exception
table for tryFinally is searched for an appropriate exception handler. The special handler is found,
causing execution to continue at index 8. The astore_1 instruction at index 8 stores the thrown value into local
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variable 1. The following jsr instruction does a subroutine call to the code for the finally block. Assuming
that code returns normally, the aload_1 instruction at index 12 pushes the thrown value back onto the operand
stack, and the following athrow instruction rethrows the value.

Compiling a try statement with both a catch clause and a finally clause is more complex:

void tryCatchFinally() {
   try {
       tryItOut();
   } catch (TestExc e) {
       handleExc(e);
   } finally {
       wrapItUp();
   }

}

becomes

Method void tryCatchFinally()
   0    aload_0                         // Beginning of try block
   1    invokevirtual #4                // Method Example.tryItOut()V
   4    goto 16                         // Jump to finally block
   7    astore_3                        // Beginning of handler for TestExc;
                                        // Store thrown value in local variable 3
   8    aload_0                         // Push this
   9    aload_3                         // Push thrown value
  10    invokevirtual #6                // Invoke handler method:
                                        // Example.handleExc(LTestExc;)V
  13    goto 16                         // Huh???1

  16    jsr 26                          // Call finally block
  19    return                          // Return after handling TestExc
  20    astore_1                        // Beginning of handler for exceptions
                                        // other than TestExc, or exceptions
                                        // thrown while handling TestExc
  21    jsr 26                          // Call finally block
  24    aload_1                         // Push thrown value...
  25    athrow                          // ...and rethrow the value to the invoker
  26    astore_2                        // Beginning of finally block
  27    aload_0                         // Push this
  28    invokevirtual #5                // Method Example.wrapItUp()V
  31    ret 2                           // Return from finally block
Exception table:
        From    To      Target          Type
        0       4       7               Class TestExc
        0       16      20              any

If the try statement completes normally, the goto instruction at index 4 jumps to the subroutine call for the
finally block at index 16. The finally block at index 26 is executed, control returns to the return
instruction at index 19, and tryCatchFinally returns normally.

If tryItOut throws an instance of TestExc, the first (innermost) applicable exception handler in the
exception table is chosen to handle the exception. The code for that exception handler, beginning at index 7,
passes the thrown value to handleExc and on its return makes the same subroutine call to the finally
block at index 26 as in the normal case. If an exception is not thrown by handleExc, tryCatchFinally
returns normally.

If tryItOut throws a value that is not an instance of TestExc or if handleExc itself throws an
exception, the condition is handled by the second entry in the exception table, which handles any value
thrown between indices 0 and 16. That exception handler transfers control to index 20, where the thrown
value is first stored in local variable 1. The code for the finally block at index 26 is called as a subroutine.
If it returns, the thrown value is retrieved from local variable 1 and rethrown using the athrow instruction. If a
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new value is thrown during execution of the finally clause, the finally clause aborts, and
tryCatchFinally returns abruptly, throwing the new value to its invoker.

7.14 Synchronization

The Java virtual machine provides explicit support for synchronization through its monitorenter and
monitorexit instructions. For code written in the Java programming language, however, perhaps the most
common form of synchronization is the synchronized method.

A synchronized method is not normally implemented using monitorenter and monitorexit. Rather, it is
simply distinguished in the runtime constant pool by the ACC_SYNCHRONIZED flag, which is checked by the
method invocation instructions. When invoking a method for which ACC_SYNCHRONIZED is set, the current
thread acquires a monitor, invokes the method itself, and releases the monitor whether the method invocation
completes normally or abruptly. During the time the executing thread owns the monitor, no other thread may
acquire it. If an exception is thrown during invocation of the synchronized method and the
synchronized method does not handle the exception, the monitor for the method is automatically released
before the exception is rethrown out of the synchronized method.

The monitorenter and monitorexit instructions exist to support synchronized statements. For example:

void onlyMe(Foo f) {
   synchronized(f) {
       doSomething();
   }

}

is compiled to

Method void onlyMe(Foo)
   0    aload_1                         // Push f
   1    astore_2                        // Store it in local variable 2
   2    aload_2                         // Push local variable 2 (f)
   3    monitorenter                    // Enter the monitor associated with f
   4    aload_0                         // Holding the monitor, pass this and...
   5    invokevirtual #5                // ...call Example.doSomething()V
   8    aload_2                         // Push local variable 2 (f)
   9    monitorexit                     // Exit the monitor associated with f
  10    return                          // Return normally
  11    aload_2                         // In case of any throw, end up here
  12    monitorexit                     // Be sure to exit monitor...
  13    athrow                          // ...then rethrow the value to the invoker
Exception table:
        From    To      Target          Type
        4       8       11              any

7.15 Compiling Nested Classes and Interfaces

JDK release 1.1 added nested classes and interfaces to the Java programming language. Nested classes and
interfaces are sometimes referred to as inner classes and interfaces, which are one sort of nested classes and
interfaces. However, nested classes and interfaces also encompass nested top-level classes and interfaces,
which are not inner classes or interfaces.

A full treatment of the compilation of nested classes and interfaces is outside the scope of this chapter.
However, interested readers can refer to the Inner Classes Specification at
http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/innerclasses.doc.html.
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1 This goto instruction is strictly unnecessary, but is generated by the javac compiler of Sun's JDK release
1.0.2.
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CHAPTER 8

Threads and Locks
This chapter details the low-level actions that may be used to explain the interaction of Java virtual machine
threads with a shared main memory. It has been adapted with minimal changes from Chapter 17 of the first
edition of The JavaTM Language Specification, by James Gosling, Bill Joy, and Guy Steele.

8.1 Terminology and Framework

A variable is any location within a program that may be stored into. This includes not only class variables and
instance variables, but also components of arrays. Variables are kept in a main memory that is shared by all
threads. Because it is impossible for one thread to access parameters or local variables of another thread, it
does not matter whether parameters and local variables are thought of as residing in the shared main memory
or in the working memory of the thread that owns them.

Every thread has a working memory in which it keeps its own working copy of variables that it must use or
assign. As the thread executes a program, it operates on these working copies. The main memory contains the
master copy of every variable. There are rules about when a thread is permitted or required to transfer the
contents of its working copy of a variable into the master copy or vice versa.

The main memory also contains locks; there is one lock associated with each object. Threads may compete to
acquire a lock.

For the purposes of this chapter, the verbs use, assign, load, store, lock, and unlock name actions that a thread
can perform. The verbs read, write, lock, and unlock name actions that the main memory subsystem can
perform. Each of these operations is atomic (indivisible).

A use or assign operation is a tightly coupled interaction between a thread's execution engine and the thread's
working memory. A lock or unlock operation is a tightly coupled interaction between a thread's execution
engine and the main memory. But the transfer of data between the main memory and a thread's working
memory is loosely coupled. When data is copied from the main memory to a working memory, two actions
must occur: a read operation performed by the main memory, followed some time later by a corresponding
load operation performed by the working memory. When data is copied from a working memory to the main
memory, two actions must occur: a store operation performed by the working memory, followed some time
later by a corresponding write operation performed by the main memory. There may be some transit time
between main memory and a working memory, and the transit time may be different for each transaction;
thus, operations initiated by a thread on different variables may be viewed by another thread as occurring in a
different order. For each variable, however, the operations in main memory on behalf of any one thread are
performed in the same order as the corresponding operations by that thread. (This is explained in greater detail
later.)

A single thread issues a stream of use, assign, lock, and unlock operations as dictated by the semantics of the
program it is executing. The underlying Java virtual machine implementation is then required additionally to
perform appropriate load, store, read, and write operations so as to obey a certain set of constraints, explained
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later. If the implementation correctly follows these rules and the programmer follows certain other rules of
programming, then data can be reliably transferred between threads through shared variables. The rules are
designed to be "tight" enough to make this possible, but "loose" enough to allow hardware and software
designers considerable freedom to improve speed and throughput through such mechanisms as registers,
queues, and caches.

Here are the detailed definitions of each of the operations:

A use action (by a thread) transfers the contents of the thread's working copy of a variable to the
thread's execution engine. This action is performed whenever a thread executes a virtual machine
instruction that uses the value of a variable.

• 

An assign action (by a thread) transfers a value from the thread's execution engine into the thread's
working copy of a variable. This action is performed whenever a thread executes a virtual machine
instruction that assigns to a variable.

• 

A read action (by the main memory) transmits the contents of the master copy of a variable to a
thread's working memory for use by a later load operation.

• 

A load action (by a thread) puts a value transmitted from main memory by a read action into the
thread's working copy of a variable.

• 

A store action (by a thread) transmits the contents of the thread's working copy of a variable to main
memory for use by a later write operation.

• 

A write action (by the main memory) puts a value transmitted from the thread's working memory by a
store action into the master copy of a variable in main memory.

• 

A lock action (by a thread tightly synchronized with main memory) causes a thread to acquire one
claim on a particular lock.

• 

An unlock action (by a thread tightly synchronized with main memory) causes a thread to release one
claim on a particular lock.

• 

Thus, the interaction of a thread with a variable over time consists of a sequence of use, assign, load, and
store operations. Main memory performs a read operation for every load and a write operation for every
store. A thread's interactions with a lock over time consist of a sequence of lock and unlock operations. All the
globally visible behavior of a thread thus comprises all the thread's operations on variables and locks.

8.2 Execution Order and Consistency

The rules of execution order constrain the order in which certain events may occur. There are four general
constraints on the relationships among actions:

The actions performed by any one thread are totally ordered; that is, for any two actions performed by
a thread, one action precedes the other.

• 

The actions performed by the main memory for any one variable are totally ordered; that is, for any
two actions performed by the main memory on the same variable, one action precedes the other.

• 

The actions performed by the main memory for any one lock are totally ordered; that is, for any two
actions performed by the main memory on the same lock, one action precedes the other.

• 

It is not permitted for an action to follow itself.• 

The last rule may seem trivial, but it does need to be stated separately and explicitly for completeness.
Without the rule, it would be possible to propose a set of actions by two or more threads and precedence
relationships among the actions that would satisfy all the other rules but would require an action to follow
itself.

Threads do not interact directly; they communicate only through the shared main memory. The relationships
between the actions of a thread and the actions of main memory are constrained in three ways:
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Each lock or unlock action is performed jointly by some thread and the main memory.• 
Each load action by a thread is uniquely paired with a read action by the main memory such that the
load action follows the read action.

• 

Each store action by a thread is uniquely paired with a write action by the main memory such that the
write action follows the store action.

• 

Most of the rules in the following sections further constrain the order in which certain actions take place. A
rule may state that one action must precede or follow some other action. Note that this relationship is
transitive: if action A must precede action B, and B must precede C, then A must precede C. The programmer
must remember that these rules are the only constraints on the ordering of actions; if no rule or combination of
rules implies that action A must precede action B, then a Java virtual machine implementation is free to
perform action B before action A, or to perform action B concurrently with action A. This freedom can be the
key to good performance. Conversely, an implementation is not required to take advantage of all the freedoms
given it.

In the rules that follow, the phrasing "B must intervene between A and C" means that action B must follow
action A and precede action C.

8.3 Rules About Variables

Let T be a thread and V be a variable. There are certain constraints on the operations performed by T with
respect to V  :

A use or assign by T of V is permitted only when dictated by execution by T of the program according
to the standard execution model. For example, an occurrence of V as an operand of the + operator
requires that a single use operation occur on V  ; an occurrence of V as the left-hand operand of the
assignment operator = requires that a single assign operation occur. All use and assign actions by a
given thread must occur in the order specified by the program being executed by the thread. If the
following rules forbid T to perform a required use as its next action, it may be necessary for T to
perform a load first in order to make progress.

• 

A store operation by T on V must intervene between an assign by T of V and a subsequent load by T
of V. (Less formally: a thread is not permitted to lose the most recent assign.)

• 

An assign operation by T on V must intervene between a load or store by T of V and a subsequent
store by T of V. (Less formally: a thread is not permitted to write data from its working memory back
to main memory for no reason.)

• 

After a thread is created, it must perform an assign or load operation on a variable before performing
a use or store operation on that variable. (Less formally: a new thread starts with an empty working
memory.)

• 

After a variable is created, every thread must perform an assign or load operation on that variable
before performing a use or store operation on that variable. (Less formally: a new variable is created
only in main memory and is not initially in any thread's working memory.)

• 

Provided that all the constraints in Sections 8.3, 8.6, and 8.7 are obeyed, a load or store operation may be
issued at any time by any thread on any variable, at the whim of the implementation.

There are also certain constraints on the read and write operations performed by main memory:

For every load operation performed by any thread T on its working copy of a variable V, there must
be a corresponding preceding read operation by the main memory on the master copy of V, and the
load operation must put into the working copy the data transmitted by the corresponding read
operation.

• 

For every store operation performed by any thread T on its working copy of a variable V, there must
follow a corresponding write operation by the main memory on the master copy of V, and the write

• 
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operation must put into the master copy the data transmitted by the corresponding store operation.
Let action A be a load or store by thread T on variable V, and let action P be the corresponding read
or write by the main memory on variable V. Similarly, let action B be some other load or store by
thread T on that same variable V, and let action Q be the corresponding read or write by the main
memory on variable V. If A precedes B, then P must precede Q. (Less formally: operations on the
master copy of any given variable on behalf of a thread are performed by the main memory in exactly
the order that the thread requested.)

• 

Note that this last rule applies only to actions by a thread on the same variable. However, there is a more
stringent rule for volatile variables (§8.7).

8.4 Nonatomic Treatment of double and long
Variables

If a double or long variable is not declared volatile, then for the purposes of load, store, read, and
write operations it is treated as if it were two variables of 32 bits each; wherever the rules require one of these
operations, two such operations are performed, one for each 32-bit half. The manner in which the 64 bits of a
double or long variable are encoded into two 32-bit quantities and the order of the operations on the halves
of the variables are not defined by The Java Language Specification.

This matters only because a read or write of a double or long variable may be handled by an actual main
memory as two 32-bit read or write operations that may be separated in time, with other operations coming
between them. Consequently, if two threads concurrently assign distinct values to the same shared
non-volatile double or long variable, a subsequent use of that variable may obtain a value that is not
equal to either of the assigned values, but rather some implementation-dependent mixture of the two values.

An implementation is free to implement load, store, read, and write operations for double and long values
as atomic 64-bit operations; in fact, this is strongly encouraged. The model divides them into 32-bit halves for
the sake of currently popular microprocessors that fail to provide efficient atomic memory transactions on
64-bit quantities. It would have been simpler for the Java virtual machine to define all memory transactions on
single variables as atomic; this more complex definition is a pragmatic concession to current hardware
practice. In the future this concession may be eliminated. Meanwhile, programmers are cautioned to explicitly
synchronize access to shared double and long variables.

8.5 Rules About Locks

Let T be a thread and L be a lock. There are certain constraints on the operations performed by T with respect
to L:

A lock operation by T on L may occur only if, for every thread S other than T, the number of
preceding unlock operations by S on L equals the number of preceding lock operations by S on L.
(Less formally: only one thread at a time is permitted to lay claim to a lock; moreover, a thread may
acquire the same lock multiple times and does not relinquish ownership of it until a matching number
of unlock operations have been performed.)

• 

An unlock operation by thread T on lock L may occur only if the number of preceding unlock
operations by T on L is strictly less than the number of preceding lock operations by T on L. (Less
formally: a thread is not permitted to unlock a lock it does not own.)

• 

With respect to a lock, the lock and unlock operations performed by all the threads are performed in some total
sequential order. This total order must be consistent with the total order on the operations of each thread.
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8.6 Rules About the Interaction of Locks and Variables

Let T be any thread, let V be any variable, and let L be any lock. There are certain constraints on the
operations performed by T with respect to V and L:

Between an assign operation by T on V and a subsequent unlock operation by T on L, a store
operation by T on V must intervene; moreover, the write operation corresponding to that store must
precede the unlock operation, as seen by main memory. (Less formally: if a thread is to perform an
unlock operation on any lock, it must first copy all assigned values in its working memory back out to
main memory.)

• 

Between a lock operation by T on L and a subsequent use or store operation by T on a variable V, an
assign or load operation on V must intervene; moreover, if it is a load operation, then the read
operation corresponding to that load must follow the lock operation, as seen by main memory. (Less
formally: a lock operation behaves as if it flushes all variables from the thread's working memory,
after which the thread must either assign them itself or load copies anew from main memory.)

• 

8.7 Rules for volatile Variables

If a variable is declared volatile, then additional constraints apply to the operations of each thread. Let T be a
thread and let V and W be volatile variables.

A use operation by T on V is permitted only if the previous operation by T on V was load, and a load
operation by T on V is permitted only if the next operation by T on V is use. The use operation is said
to be "associated" with the read operation that corresponds to the load.

• 

A store operation by T on V is permitted only if the previous operation by T on V was assign, and an
assign operation by T on V is permitted only if the next operation by T on V is store. The assign
operation is said to be "associated" with the write operation that corresponds to the store.

• 

Let action A be a use or assign by thread T on variable V, let action F be the load or store associated
with A, and let action P be the read or write of V that corresponds to F. Similarly, let action B be a use
or assign by thread T on variable W, let action G be the load or store associated with B, and let action
Q be the read or write of W that corresponds to G. If A precedes B, then P must precede Q. (Less
formally: operations on the master copies of volatile variables on behalf of a thread are performed by
the main memory in exactly the order that the thread requested.)

• 

8.8 Prescient Store Operations

If a variable is not declared volatile, then the rules in the previous sections are relaxed slightly to allow
store operations to occur earlier than would otherwise be permitted. The purpose of this relaxation is to allow
optimizing compilers to perform certain kinds of code rearrangement that preserve the semantics of properly
synchronized programs, but might be caught in the act of performing memory operations out of order by
programs that are not properly synchronized.

Suppose that a store by T of V would follow a particular assign by T of V according to the rules of the
previous sections, with no intervening load or assign by T of V. Then that store operation would send to the
main memory the value that the assign operation put into the working memory of thread T. The special rule
allows the store operation actually to occur before the assign operation instead, if the following restrictions
are obeyed:
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If the store operation occurs, the assign is bound to occur. (Remember, these are restrictions on what
actually happens, not on what a thread plans to do. No fair performing a store and then throwing an
exception before the assign occurs!)

• 

No lock operation intervenes between the relocated store and the assign.• 
No load of V intervenes between the relocated store and the assign.• 
No other store of V intervenes between the relocated store and the assign.• 
The store operation sends to the main memory the value that the assign operation will put into the
working memory of thread T.

• 

This last property inspires us to call such an early store operation prescient: it has to know ahead of time,
somehow, what value will be stored by the assign that it should have followed. In practice, optimized
compiled code will compute such values early (which is permitted if, for example, the computation has no
side effects and throws no exceptions), store them early (before entering a loop, for example), and keep them
in working registers for later use within the loop.

8.9 Discussion

Any association between locks and variables is purely conventional. Locking any lock conceptually flushes
all variables from a thread's working memory, and unlocking any lock forces the writing out to main memory
of all variables that the thread has assigned. That a lock may be associated with a particular object or a class is
purely a convention. For example, in some applications it may be appropriate always to lock an object before
accessing any of its instance variables; synchronized methods are a convenient way to follow this
convention. In other applications, it may suffice to use a single lock to synchronize access to a large collection
of objects.

If a thread uses a particular shared variable only after locking a particular lock and before the corresponding
unlocking of that same lock, then the thread will read the shared value of that variable from main memory
after the lock operation, if necessary, and will copy back to main memory the value most recently assigned to
that variable before the unlock operation. This, in conjunction with the mutual exclusion rules for locks,
suffices to guarantee that values are correctly transmitted from one thread to another through shared variables.

The rules for volatile variables effectively require that main memory be touched exactly once for each use or
assign of a volatile variable by a thread, and that main memory be touched in exactly the order dictated by the
thread execution semantics. However, such memory operations are not ordered with respect to read and write
operations on nonvolatile variables.

8.10 Example: Possible Swap

Consider a class that has class variables a and b and methods hither and yon:

class Sample {
    int a = 1, b = 2;
    void hither() {
        a = b;
    }
    void yon() 
        b = a;
    }
}

Now suppose that two threads are created and that one thread calls hither while the other thread calls yon.
What is the required set of actions and what are the ordering constraints?
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Let us consider the thread that calls hither. According to the rules, this thread must perform a use of b
followed by an assign of a. That is the bare minimum required to execute a call to the method hither.

Now, the first operation on variable b by the thread cannot be use. But it may be assign or load. An assign to
b cannot occur because the program text does not call for such an assign operation, so a load of b is required.
This load operation by the thread in turn requires a preceding read operation for b by the main memory.

The thread may optionally store the value of a after the assign has occurred. If it does, then the store
operation in turn requires a following write operation for a by the main memory.

The situation for the thread that calls yon is similar, but with the roles of a and b exchanged.

The total set of operations may be pictured as follows:

Here an arrow from action A to action B indicates that A must precede B.

In what order may the operations by the main memory occur? The only constraint is that it is not possible
both for the write of a to precede the read of a and for the write of b to precede the read of b, because the
causality arrows in the diagram would form a loop so that an action would have to precede itself, which is not
allowed. Assuming that the optional store and write operations are to occur, there are three possible orderings
in which the main memory might legitimately perform its operations. Let ha and hb be the working copies of
a and b for the hither thread, let ya and yb be the working copies for the yon thread, and let ma and mb
be the master copies in main memory. Initially ma=1 and mb=2. Then the three possible orderings of
operations and the resulting states are as follows:

write a read a, read b write b (then ha=2, hb=2, ma=2, mb=2, ya=2, yb=2)• 
read a write a, write b read b (then ha=1, hb=1, ma=1, mb=1, ya=1, yb=1)• 
read a write a, read b write b (then ha=2, hb=2, ma=2, mb=1, ya=1, yb=1)• 

Thus, the net result might be that, in main memory, b is copied into a, a is copied into b, or the values of a
and b are swapped; moreover, the working copies of the variables might or might not agree. It would be
incorrect, of course, to assume that any one of these outcomes is more likely than another. This is one place in
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which the behavior of a program is necessarily timing-dependent.

Of course, an implementation might also choose not to perform the store and write operations, or only one of
the two pairs, leading to yet other possible results.

Now suppose that we modify the example to use synchronized methods:

class SynchSample {
    int a = 1, b = 2;
    synchronized void hither() {
        a = b;
    }
    synchronized void yon() 
        b = a;
    }
}

Let us again consider the thread that calls hither. According to the rules, this thread must perform a lock
operation (on the instance of class SynchSample on which the hither method is being called) before the
body of method hither is executed. This is followed by a use of b and then an assign of a. Finally, an
unlock operation on that same instance of SynchSample must be performed after the body of method
hither completes. That is the bare minimum required to execute a call to the method hither.

As before, a load of b is required, which in turn requires a preceding read operation for b by the main
memory. Because the load follows the lock operation, the corresponding read must also follow the lock
operation.

Because an unlock operation follows the assign of a, a store operation on a is mandatory, which in turn
requires a following write operation for a by the main memory. The write must precede the unlock operation.

The situation for the thread that calls yon is similar, but with the roles of a and b exchanged.

The total set of operations may be pictured as follows:
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The lock and unlock operations provide further constraints on the order of operations by the main memory; the
lock operation by one thread cannot occur between the lock and unlock operations of the other thread.
Moreover, the unlock operations require that the store and write operations occur. It follows that only two
sequences are possible:

write a read a, read b write b (then ha=2, hb=2, ma=2, mb=2, ya=2, yb=2)• 
read a write a, write b read b (then ha=1, hb=1, ma=1, mb=1, ya=1, yb=1)• 

While the resulting state is timing-dependent, it can be seen that the two threads will necessarily agree on the
values of a and b.

8.11 Example: Out-of-Order Writes

This example is similar to that in the preceding section, except that one method assigns to both variables and
the other method reads both variables. Consider a class that has class variables a and b and methods to and
fro:

class Simple {
    int a = 1, b = 2;
    void to() {
        a = 3;
        b = 4;
    }
    void fro() 
        System.out.println("a= " + a + ", b=" + b);
    }
}
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Now suppose that two threads are created and that one thread calls to while the other thread calls fro. What
is the required set of actions and what are the ordering constraints?

Let us consider the thread that calls to. According to the rules, this thread must perform an assign of a
followed by an assign of b. That is the bare minimum required to execute a call to the method to. Because
there is no synchronization, it is at the option of the implementation whether or not to store the assigned
values back to main memory! Therefore, the thread that calls fro may obtain either 1 or 3 for the value of a
and independently may obtain either 2 or 4 for the value of b.

Now suppose that to is synchronized but fro is not:

class SynchSimple {
    int a = 1, b = 2;
    synchronized void to() {
        a = 3;
        b = 4;
    }
    void fro() 
        System.out.println("a= " + a + ", b=" + b);
    }
}

In this case the method to will be forced to store the assigned values back to main memory before the unlock
operation at the end of the method. The method fro must, of course, use a and b (in that order) and so must
load values for a and b from main memory.

The total set of operations may be pictured as follows:

Here an arrow from action A to action B indicates that A must precede B.

In what order may the operations by the main memory occur? Note that the rules do not require that write a
occur before write b; neither do they require that read a occur before read b. Also, even though method to is
synchronized, method fro is not synchronized, so there is nothing to prevent the read operations from
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occurring between the lock and unlock operations. (The point is that declaring one method synchronized
does not of itself make that method behave as if it were atomic.)

As a result, the method fro could still obtain either 1 or 3 for the value of a and independently could obtain
either 2 or 4 for the value of b. In particular, fro might observe the value 1 for a and 4 for b. Thus, even
though to does an assign to a and then an assign to b, the write operations to main memory may be observed
by another thread to occur as if in the opposite order.

Finally, suppose that to and fro are both synchronized:

class SynchSynchSimple {
    int a = 1, b = 2;
    synchronized void to() {
        a = 3;
        b = 4;
    }
    synchronized void fro() 
        System.out.println("a= " + a + ", b=" + b);
    }
}

In this case, the actions of method fro cannot be interleaved with the actions of method to, and so fro will
print either "a=1, b=2" or "a=3, b=4".

8.12 Threads

Threads are created and managed by the classes Thread and ThreadGroup. Creating a Thread object
creates a thread, and that is the only way to create a thread. When the thread is created, it is not yet active; it
begins to run when its start method is called.

8.13 Locks and Synchronization

There is a lock associated with every object. The Java programming language does not provide a way to
perform separate lock and unlock operations; instead, they are implicitly performed by high-level constructs
that always arrange to pair such operations correctly. (The Java virtual machine, however, provides separate
monitorenter and monitorexit instructions that implement the lock and unlock operations.)

The synchronized statement computes a reference to an object; it then attempts to perform a lock
operation on that object and does not proceed further until the lock operation has successfully completed. (A
lock operation may be delayed because the rules about locks can prevent the main memory from participating
until some other thread is ready to perform one or more unlock operations.) After the lock operation has been
performed, the body of the synchronized statement is executed. Normally, a compiler for the Java
programming language ensures that the lock operation implemented by a monitorenter instruction executed
prior to the execution of the body of the synchronized statement is matched by an unlock operation
implemented by a monitorexit instruction whenever the synchronized statement completes, whether
completion is normal or abrupt.

A synchronized method automatically performs a lock operation when it is invoked; its body is not
executed until the lock operation has successfully completed. If the method is an instance method, it locks the
lock associated with the instance for which it was invoked (that is, the object that will be known as this
during execution of the method's body). If the method is static, it locks the lock associated with the
Class object that represents the class in which the method is defined. If execution of the method's body is
ever completed, either normally or abruptly, an unlock operation is automatically performed on that same
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lock.

Best practice is that if a variable is ever to be assigned by one thread and used or assigned by another, then all
accesses to that variable should be enclosed in synchronized methods or synchronized statements.

Although a compiler for the Java programming language normally guarantees structured use of locks (see
Section 7.14, "Synchronization"), there is no assurance that all code submitted to the Java virtual machine will
obey this property. Implementations of the Java virtual machine are permitted but not required to enforce both
of the following two rules guaranteeing structured locking.

Let T be a thread and L be a lock. Then:

The number of lock operations performed by T on L during a method invocation must equal the
number of unlock operations performed by T on L during the method invocation whether the method
invocation completes normally or abruptly.

1. 

At no point during a method invocation may the number of unlock operations performed by T on L
since the method invocation exceed the number of lock operations performed by T on L since the
method invocation.

2. 

In less formal terms, during a method invocation every unlock operation on L must match some preceding
lock operation on L.

Note that the locking and unlocking automatically performed by the Java virtual machine when invoking a
synchronized method are considered to occur during the calling method's invocation.

8.14 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associated wait set, which is a set of threads.
When an object is first created, its wait set is empty.

Wait sets are used by the methods wait, notify, and notifyAll of class Object. These methods also
interact with the scheduling mechanism for threads.

The method wait should be invoked for an object only when the current thread (call it T  ) has already
locked the object's lock. Suppose that thread T has in fact performed N lock operations on the object that have
not been matched by unlock operations on that same object. The wait method then adds the current thread to
the wait set for the object, disables the current thread for thread scheduling purposes, and performs N unlock
operations on the object to relinquish the lock on it. Locks having been locked by thread T on objects other
than the one T is to wait on are not relinquished. The thread T then lies dormant until one of three things
happens:

Some other thread invokes the notify method for that object, and thread T happens to be the one
arbitrarily chosen as the one to notify.

• 

Some other thread invokes the notifyAll method for that object.• 
If the call by thread T to the wait method specified a time-out interval, then the specified amount of
real time elapses.

• 

The thread T is then removed from the wait set and reenabled for thread scheduling. It then locks the object
again (which may involve competing in the usual manner with other threads); once it has gained control of the
lock, it performs N - 1 additional lock operations on that same object and then returns from the invocation of
the wait method. Thus, on return from the wait method, the state of the object's lock is exactly as it was
when the wait method was invoked.
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The notify method should be invoked for an object only when the current thread has already locked the
object's lock, or an IllegalMonitorStateException will be thrown. If the wait set for the object is
not empty, then some arbitrarily chosen thread is removed from the wait set and reenabled for thread
scheduling. (Of course, that thread will not be able to proceed until the current thread relinquishes the object's
lock.)

The notifyAll method should be invoked for an object only when the current thread has already locked
the object's lock, or an IllegalMonitorStateException will be thrown. Every thread in the wait set
for the object is removed from the wait set and reenabled for thread scheduling. (Those threads will not be
able to proceed until the current thread relinquishes the object's lock.)
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CHAPTER 9

Opcode Mnemonics by Opcode
This chapter gives the mapping from Java virtual machine instruction opcodes, including the reserved opcodes
(§6.2), to the mnemonics for the instructions represented by those opcodes.

00 (0x00) nop

01 (0x01) aconst_null

02 (0x02) iconst_m1

03 (0x03) iconst_0

04 (0x04) iconst_1

05 (0x05) iconst_2

06 (0x06) iconst_3

07 (0x07) iconst_4

08 (0x08) iconst_5

09 (0x09) lconst_0

10 (0x0a) lconst_1

11 (0x0b) fconst_0

12 (0x0c) fconst_1

13 (0x0d) fconst_2

14 (0x0e) dconst_0

15 (0x0f) dconst_1

16 (0x10) bipush

17 (0x11) sipush

18 (0x12) ldc

19 (0x13) ldc_w
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20 (0x14) ldc2_w

21 (0x15) iload

22 (0x16) lload

23 (0x17) fload

24 (0x18) dload

25 (0x19) aload

26 (0x1a) iload_0

27 (0x1b) iload_1

28 (0x1c) iload_2

29 (0x1d) iload_3

30 (0x1e) lload_0

31 (0x1f) lload_1

32 (0x20) lload_2

33 (0x21) lload_3

34 (0x22) fload_0

35 (0x23) fload_1

36 (0x24) fload_2

37 (0x25) fload_3

38 (0x26) dload_0

39 (0x27) dload_1

40 (0x28) dload_2

41 (0x29) dload_3

42 (0x2a) aload_0

43 (0x2b) aload_1

44 (0x2c) aload_2

45 (0x2d) aload_3

46 (0x2e) iaload
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47 (0x2f) laload

48 (0x30) faload

49 (0x31) daload

50 (0x32) aaload

51 (0x33) baload

52 (0x34) caload

53 (0x35) saload

54 (0x36) istore

55 (0x37) lstore

56 (0x38) fstore

57 (0x39) dstore

58 (0x3a) astore

59 (0x3b) istore_0

60 (0x3c) istore_1

61 (0x3d) istore_2

62 (0x3e) istore_3

63 (0x3f) lstore_0

64 (0x40) lstore_1

65 (0x41) lstore_2

66 (0x42) lstore_3

67 (0x43) fstore_0

68 (0x44) fstore_1

69 (0x45) fstore_2

70 (0x46) fstore_3

71 (0x47) dstore_0

72 (0x48) dstore_1

73 (0x49) dstore_2
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74 (0x4a) dstore_3

75 (0x4b) astore_0

76 (0x4c) astore_1

77 (0x4d) astore_2

78 (0x4e) astore_3

79 (0x4f) iastore

80 (0x50) lastore

81 (0x51) fastore

82 (0x52) dastore

83 (0x53) aastore

84 (0x54) bastore

85 (0x55) castore

86 (0x56) sastore

87 (0x57) pop

88 (0x58) pop2

089 (0x59) dup

090 (0x5a) dup_x1

091 (0x5b) dup_x2

092 (0x5c) dup2

093 (0x5d) dup2_x1

094 (0x5e) dup2_x2

095 (0x5f) swap

096 (0x60) iadd

097 (0x61) ladd

098 (0x62) fadd

099 (0x63) dadd

100 (0x64) isub
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101 (0x65) lsub

102 (0x66) fsub

103 (0x67) dsub

104 (0x68) imul

105 (0x69) lmul

106 (0x6a) fmul

107 (0x6b) dmul

108 (0x6c) idiv

109 (0x6d) ldiv

110 (0x6e) fdiv

111 (0x6f) ddiv

112 (0x70) irem

113 (0x71) lrem

114 (0x72) frem

115 (0x73) drem

116 (0x74).......ineg

117 (0x75) lneg

118 (0x76) fneg

119 (0x77) dneg

120 (0x78) ishl

121 (0x79) lshl

122 (0x7a) ishr

123 (0x7b) lshr

124 (0x7c) iushr

125 (0x7d) lushr

126 (0x7e) iand

127 (0x7f) land
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128 (0x80) ior

129 (0x81) lor

130 (0x82) ixor

131 (0x83) lxor

132 (0x84) iinc

133 (0x85) i2l

134 (0x86) i2f

135 (0x87) i2d

136 (0x88) l2i

137 (0x89) l2f

138 (0x8a) l2d

139 (0x8b) f2i

140 (0x8c) f2l

141 (0x8d) f2d

142 (0x8e) d2i

143 (0x8f) d2l

144 (0x90) d2f

145 (0x91) i2b

146 (0x92) i2c

147 (0x93) i2s

148 (0x94) lcmp

149 (0x95) fcmpl

150 (0x96) fcmpg

151 (0x97) dcmpl

152 (0x98) dcmpg

153 (0x99) ifeq

154 (0x9a) ifne
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155 (0x9b) iflt

156 (0x9c) ifge

157 (0x9d) ifgt

158 (0x9e) ifle

159 (0x9f) if_icmpeq

160 (0xa0) if_icmpne

161 (0xa1) if_icmplt

162 (0xa2) if_icmpge

163 (0xa3) if_icmpgt

164 (0xa4) if_icmple

165 (0xa5) if_acmpeq

166 (0xa6) if_acmpne

167 (0xa7) goto

168 (0xa8) jsr

169 (0xa9) ret

170 (0xaa) tableswitch

171 (0xab) lookupswitch

172 (0xac) ireturn

173 (0xad) lreturn

174 (0xae) freturn

175 (0xaf) dreturn

176 (0xb0) areturn

177 (0xb1) return

178 (0xb2) getstatic

179 (0xb3) putstatic

180 (0xb4) getfield

181 (0xb5) putfield
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182 (0xb6) invokevirtual

183 (0xb7) invokespecial

184 (0xb8) invokestatic

185 (0xb9) invokeinterface

186 (0xba) xxxunusedxxx1

187 (0xbb) new

188 (0xbc) newarray

189 (0xbd) anewarray

190 (0xbe) arraylength

191 (0xbf) athrow

192 (0xc0) checkcast

193 (0xc1) instanceof

194 (0xc2) monitorenter

195 (0xc3) monitorexit

196 (0xc4) wide

197 (0xc5) multianewarray

198 (0xc6) ifnull

199 (0xc7) ifnonnull

200 (0xc8) goto_w

201 (0xc9) jsr_w

Reserved opcodes:

202 (0xca) breakpoint

254 (0xfe) impdep1

255 (0xff) impdep2

1 For historical reasons, opcode value 186 is not used.
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Summary of Clarifications and Amendments
This appendix discusses the differences between the original version of The JavaTM Virtual Machine
Specification and the present revision. Its purpose is twofold: to summarize what changes have been made and
to explain why they were made.

Throughout this appendix, we refer to the original version of The JavaTM Virtual Machine Specification (that
is, the first published version of this book) as the original specification or the original specification of the
Java virtual machine. We refer to the current book as the revised specification. We denote the first edition of
The JavaTM Language Specification as simply The JavaTM Language Specification.

The revised specification seeks to clarify points that gave rise to misunderstanding and to correct ambiguities,
errors, and omissions in the original specification.

Except for the treatment of floating-point computation, the differences between the revised specification and
its predecessor have no effect on valid programs written in the Java programming language. The revisions
influence only how the virtual machine handles incorrect programs. In many of these instances, most
implementations did not implement the original specification. The revised specification documents the
intended behavior.

The most obvious changes are in the specification of floating-point types and operations; class file
verification; initialization, loading, and linking; and the method invocation instructions. In addition, several
other important corrections have been made.

The revised specification also fixes errors or clarifies issues that were brought to our attention by readers of
the original specification.

While we have made every effort to correct as many problems as possible, we recognize that additional
improvements would benefit this specification. In particular, we believe that the description of class file
verification should be further refined, ideally to the point of constituting a formal specification. We anticipate
that future revisions will address remaining weaknesses and correct any newly reported bugs, while retaining
unchanged the semantics of the Java programming language.

The following sections discuss the changes to the original specification in greater detail and explain why the
changes were necessary.

Floating-Point Types and Operations

The original specification required that all single- and double-precision floating- point calculations round their
results to the IEEE 754 single- and double-precision formats, respectively. The revised specification permits
additional floating-point calculations to be done using IEEE 754 extended precision formats.

As a result of this change, implementations on processors that more naturally and efficiently support
extended precision formats and floating-point operations on extended precision formats can deliver better
performance for floating-point calculations. Implementations on processors that naturally and efficiently
implement IEEE 754 single- and double-precision operations as mandated by the original specification may
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continue to do so. The floating-point behavior of any Java virtual machine implementation that conforms to
the original specification also conforms to the revised specification.

Changes to class File Verification

The most important clarification on the topic of class file verification is that every Java virtual machine
implementation must in fact perform verification. This is stated unambiguously in the The JavaTM Language
Specification. The original specification of the Java virtual machine contained several misleading sentences
that led some readers to conclude that verification was optional.

The discussion of the class file format in Chapter 4 also corrects a number of small errors in the original
specification. The most significant of these corrections are:

Interfaces can contain methods other than class or interface initialization methods (<clinit>
methods).

• 

The class reference in a CONSTANT_Fieldref_info can be an interface type since interfaces can
contain static fields.

• 

Methods that are native or abstract cannot have a Code attribute.• 
Multiple declarations of a field or method with the same name and descriptor are illegal.• 

All of the preceding changes correct misstatements in the original specification that were obviously untrue. In
addition, class file verification no longer bans attempts to invoke abstract methods; see a complete
discussion of this issue later in this appendix.

Initialization

The JavaTM Language Specification and the original specification of the Java virtual machine contradict each
other on the question of whether the element type of an array type must be initialized when an instance of the
array type is created. The JavaTM Language Specification specifies that the element type should be initialized
in this case, whereas the original specification of the Java virtual machine states that it should not. We have
resolved this contradiction in favor of the original Java virtual machine specification. The JavaTM Language
Specification is thus in error, and will be corrected in its next edition.

The evident confusion over the circumstances triggering initialization led us to reword the specification of
when initialization occurs (§2.17.4). However, this reworded specification is equivalent to the original.

One of the original requirements was that a class would be initialized the first time one of its constructors is
invoked. In the Java programming language, constructor invocation constitutes instance creation.
Furthermore, since no instance method can be invoked if no instances exist, it is clear that the requirement that
a class be initialized the first time one of its methods is invoked is relevant only for static methods. By
similar reasoning, the requirement that a class be initialized if any of its fields is accessed applies only to
static fields.

The original specification did not accurately describe the circumstances that would trigger initialization at the
Java virtual machine level (see discussion later in this appendix). Section 5.5 now gives a simple and precise
definition in terms of Java virtual machine instructions.
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Loading and Linking

Chapter 5, "Loading, Linking, and Initializing," has been completely rewritten (and retitled). Chapter 5 of the
original specification was erroneous in several important respects. The new chapter corrects these errors and
tries to be both clearer and more precise. The organization of the revised chapter closely follows the structure
of the corresponding sections in Chapter 12 of The JavaTM Language Specification.

The key changes include the following:

Clarifying that loading a class causes its superinterfaces to be resolved.• 

The description of class loading in the original specification did not state that resolving a class
required its superinterfaces to be resolved. This was an error in early Java virtual machine
implementations that has been corrected.

Clarifying that resolution does not necessarily imply further linking.• 

The description of CONSTANT_Class_info resolution in Section 5.1.1 of the original
specification implied that resolution of a reference to a class causes it to be linked. While this was true
of Sun's Java virtual machine implementation, the description was more restrictive than The JavaTM

Language Specification , which clearly states that Java virtual machine implementations have
flexibility in the timing of linking activities. The revised specification of the Java virtual machine
agrees with The JavaTM Language Specification on this issue.

Clarifying that resolution does not imply initialization.• 

The description of CONSTANT_Class_info resolution in Section 5.1.1 of the original
specification implied that resolution of a class causes it to be initialized. However, the original
specification also included the contradictory statement that initialization should occur only on the first
active use of a class. In a Java virtual machine implementation that performs lazy resolution, the
distinction is subtle. In other implementations the distinction is much clearer. For example, eager
resolution is explicitly allowed by The Java Language Specification. If resolution always provoked
initialization, such an implementation would be forced to perform eager initialization, in clear
contradiction to The JavaTM Language Specification. The contradiction is resolved by decoupling
resolution from initialization.

A closely related problem is the statement in Section 5.1.2 of the original specification that the
loadClass method of class ClassLoader can cause initialization to occur if its second argument
is true. This contradicts The JavaTM Language Specification, which states that only loading and
linking occur in this case. Again, the contradiction has been resolved to conform to The JavaTM

Language Specification, for essentially the same reasons.

Clarifying that class loading uses ClassLoader.loadClass(String).• 

The original specification stated that when loading a class or interface using a user-defined class
loader the Java virtual machine invokes the two-argument method
ClassLoader.loadClass(String, boolean). The purpose of the boolean argument was
to indicate whether linking should take place. However, it was noted on page 144 of the original
specification that this interface was likely to change. It was recognized that placing responsibility for
linking on the class loader was both inappropriate and unreliable.

Beginning with JDK release 1.1, linking is handled directly by the Java virtual machine. An additional
method loadClass(String) has also been added to class ClassLoader. This method may
similarly be invoked by the Java virtual machine. The revised specification defines class loading in
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terms of the new method. The two argument version is still retained in the Java 2 platform v1.2 in the
interests of compatibility, but plays no role in the revised specification.

Making explicit requirements for type safe class loading.• 

The subtleties of type safe linkage in the presence of multiple, user-defined class loaders were not
sufficiently appreciated when the original specification was written. It has subsequently become clear
that a detailed description of loading constraints on runtime types is warranted. Of course, the
presence of loading constraints is observable only by invalid programs.

Specifying explicitly the rules for access control.• 

These rules follow from The JavaTM Language Specification, but were left implicit in the original
specification. The rules correspond to the behavior of existing implementations.

Indicating that more appropriate exceptions are thrown when a class or interface is invalid.• 

Section 5.1.1 of the original specification states that a NoClassDefFoundError should be thrown
if the representation of a class or interface is invalid. However, both The JavaTM Language
Specification and Section 2.16.2 of the original specification state that a ClassFormatError is
thrown in this case. Clearly, a ClassFormatError is more appropriate.

Clarifying that the class hierarchy is searched when resolving fields and methods.• 

The original specification was unclear as to whether, during method or field resolution, the referenced
field had to be declared in the exact class referenced or could be inherited. This led to variations
among Java virtual machine implementations and inconsistency between The Java Virtual Machine
Specification and The JavaTM Language Specification. The revised specification gives a more precise
description that agrees with the behavior of most implementations, but not with The JavaTM Language
Specification. The JavaTM Language Specification will be corrected in its next edition.

This choice gives programmers the flexibility of moving methods and fields in the class hierarchy
while retaining binary compatibility with previous implementations of their programs.

Clarifying that an AbstractMethodError may not be raised during preparation.• 

The JavaTM Language Specification requires that adding a method to an interface be a binary
compatible change. However, Sections 5.1.1 and 2.16.3 of the original specification require that
preparation reject a class that has an abstract method unless that class is itself abstract. The
latter requirement contradicts the former.

Consider the case of an interface I implemented by a class C that is not abstract. If a new method
is added to I, C must implement it. However, if an old version of C is used together with the new
version of I at run time, C will indeed have an abstract method. If preparation were to raise an
AbstractMethodError in this case, adding a method to I would not have been a binary
compatible change, since it would have resulted in a link-time failure. Consequently, the check at
preparation time has been dropped. This change has implications for method invocation, as discussed
below.

Clarifying that interface method resolution may raise exceptions.• 

The description in Section 5.3 of the original specification omitted the checks required during
interface method resolution. These checks (that the referenced interface exists and that the referenced
method exists in that interface) are required by The JavaTM Language Specification and are performed

Summary of Clarifications and Amendments

316



by most widely used implementations of the Java virtual machine. The checks are documented in
Section 5.4.3.4 of the revised specification.

Specifying events triggering class or interface initialization.• 

As a consequence of the decoupling of class and interface initialization from resolution, it became
necessary to specify when the Java virtual machine triggers initialization. This specification is given
in Section 5.5 of the revised specification. As noted earlier, this description agrees with the
specification of the events at the Java programming language level triggering initialization, given in
Section 2.17.4 of the revised specification.

Changes to Method Invocation

The following changes have been made to the specification of the method invocation instructions. Many of
these are direct consequences of the changes described in the previous section; others are designed merely to
clarify the presentation.

Reliance on method tables, which was merely illustrative, has been removed.• 

The descriptions of the method invocation instructions made use of the well-known concept of a
method dispatch table. The method tables were used as expository devices, but unfortunately many
readers mistakenly thought that the use of such tables was a requirement of the specification. To
clarify this point, a lookup algorithm is given instead.

Link-time and runtime exceptions are used consistently.• 

The original specification sometimes listed exceptions that could be raised by an instruction according
to their position in the exception hierarchy, rather than by when they might occur. This usage was
inconsistent and sometimes erroneous.

The intent of the categories Linking Exceptions and Runtime Exceptions at the end of each instruction
description is to describe at what phase of execution an error will be thrown. An important example of
this is the treatment of UnsatisfiedLinkError. The descriptions of all method invocation
instructions specify that native methods are bound at run time if they have not been bound already.
If the binding fails, an UnsatisfiedLinkError is thrown. However,
UnsatisfiedLinkError is consistently listed in the instruction descriptions of the original
specification as a Linking Exception. To make it clear that the exception is actually thrown at run
time, the revised specification lists UnsatisfiedLinkError as a Runtime Exception in the
descriptions of all the method invocation instructions.

Another instance of this problem was in the description of the invokeinterface instruction. Most of the
exceptions listed in the original specification of invokeinterface as Linking Exceptions actually
occurred at run time. They are listed in the revised specification as Runtime Exceptions.

It is possible to attempt to invoke abstract methods at run time.• 

This is a direct result of the elimination of the abstract method check during class or interface
preparation, as discussed earlier. While in many cases the use of an abstract method on a class
that is not abstract will still result in a link-time error, it is possible to construct cases where the
error will not occur until run time.

Consider an abstract class A with abstract method foo and concrete subclass B. If B neglects
to implement foo, then a method
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     void bar(A a) {a.foo();}

will fail if invoked upon an instance of B. This will not be detected at link time, but at run time. As a
result, invokeinterface and invokevirtual may raise an AbstractMethodError at run time.

The invokeinterface instruction specification has changed.• 

The description of the invokeinterface instruction now states that the target of the method invocation
must support the referenced interface. This is required by The JavaTM Language Specification and has
been a property of all major Java virtual machine implementations for some time.

The description of the invokespecial instruction has been clarified.• 

The second bullet on page 261 of the original specification was redundant and has been removed. The
other bullets have been reordered, and the fact that ordinarily the resolved method is selected for
execution has been asserted explicitly. These changes do not alter the specification in any way, but
serve only to make the text more understandable.

Nested Classes

Nested classes were introduced into the Java programming language after the original specification of the Java
virtual machine and the first edition of The Java Language Specification were printed. The Innerclasses
and Synthetic attributes, described in the revised specification in Section 4.7.5 and Section 4.7.6,
respectively, were added in JDK release 1.1 in order to support nested classes.

Unfortunately, we have not been able to include a description of nested classes in the Java programming
language overview given in Chapter 2. A complete description will be included in the next edition of the The
JavaTM Language Specification. Until then, refer to the documentation on the World Wide Web at
http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses.

Chapter 9 of Original Specification Deleted

Chapter 9, "An Optimization," of the original specification documented an optimization technique used in
Sun's contemporary Java virtual machine implementation. The original specification was clear that this
chapter and the technique it described were not part of the Java virtual machine specification. However, the
chapter provided an example of the flexibility that the Java virtual machine specification intends to give
implementors. This information about Sun's implementation was also considered possibly useful to writers of
tools such as debuggers.

The chapter has been removed from the revised specification. The optimization technique it described is now
well understood. More important, the technique exactly as described is not used by many of the Java virtual
machine implementations, including some of Sun's, developed since the original specification was published.
The value of the chapter to tool writers has diminished for the same reason. Thus, the chapter is now best seen
as documentation for a specific Java virtual machine implementation, making it inappropriate for the Java
virtual machine specification.

Summary of Clarifications and Amendments

318

http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses


Other Issues

In light of our experience with several releases of the Java platform, the interpretation of the version
numbers defined as part of the class file format has changed. The major version number is now
intended to correspond to new platform major releases (for instance, the Java 2 platform, Standard
Edition, v1.2), while the minor version number may be used to represent release levels of platform
implementations (for instance, the Java 2 SDK, Standard Edition, v1.2.1). Since the first public
release of the Java platform, all class files have been generated using major version number 45 and
minor version number 3. Hence, no existing well-formed class file is affected by this change in
interpretation.

• 

Corresponding to the change in version number interpretation, the actual version numbers accepted by
new implementations of the Java virtual machine have changed. Existing binaries are not affected by
this change because these new virtual machine implementations will continue to accept class files
with the historically used version numbers.

• 

It is now clear that reflective operations can cause class initialization. The original specification did
not discuss the topic of reflection at all, since reflection did not yet exist in the Java programming
language. Many subsequently added reflective operations correspond to language-level constructs that
do require initialization and similarly must cause initialization. This is documented in the revised
specification.

• 

Class finalization has been removed from the Java programming language and, consequently, from
the revised specification as well. Class finalization had never been implemented, so the change had no
effect on existing programs. The effects of class finalization are obtainable via instance finalization.

• 

The rules for class unloading have been clarified. The description of class unloading in the original
specification gave, by way of illustration, certain necessary conditions for unloading a class. These
conditions were misinterpreted as being sufficient conditions. This led to implementations that
unloaded classes usable by a running program. The revised specification describes the precise
circumstances under which classes may be unloaded.

• 

The instructions aastore, checkcast, and instanceof contain a subtyping algorithm. The original
version of this algorithm was flawed in that it did not cover the case where two arrays whose
component types were interfaces were being compared. The revised specification corrects this.

• 

The descriptions of the getfield and putfield instructions have been made less implementation specific.
In particular, the revised specification eliminates the notion of particular field widths and offsets.

• 

The descriptions of the instructions putfield and putstatic now include a specification of their behavior
when a field is final. This documents the behavior of existing implementations.

• 

The description of the process of throwing an exception in Section 3.10 has been made clearer and
more precise.

• 

The descriptions of the various return instructions and athrow failed to note that these instructions
could raise an IllegalMonitorStateException. The original specification implicitly allowed
for the raising of such an exception as a consequence of Section 8.5:

• 

An unlock operation by thread T on lock L may occur only if the number of preceding unlock
operations by T on L is strictly less than the number of preceding lock operations by T on L.

and Section 8.13:

If execution of the method's body is ever completed, either normally or abruptly, an unlock operation
is automatically performed on that same lock.

However, this had not been stated clearly and explicitly.

Structured use of locks may now be enforced. The description of locking in synchronized
statements given in Section 8.13 of the original specification was erroneous. It stated the following:

• 
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If execution of the body is ever completed, either normally or abruptly, an unlock operation is
automatically performed on that same lock.

This is a property of programs written in the Java programming language, guaranteed by correct
compilers for the Java programming language; it is not guaranteed by the Java virtual machine.
However, programs do indeed make structured use of locking, and Java virtual machine
implementations may rely on and enforce this property. The appropriate rules are given in the revised
version of Section 8.13. As a consequence of those rules, IllegalMonitorStateException
exceptions may be raised by the return instructions and athrow, and by the method invocation
instructions when invoking native methods.

The Deprecated attribute, an attribute introduced in JDK release 1.1 to support the
@deprecated tag in documentation comments, has been specified. The presence of a
Deprecated attribute does not alter the semantics of a class or interface.

• 
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Index
# character

use in compilation examples, 364
( character
meaning in method descriptor, 102
) character
meaning in method descriptor, 102
/ character
in class and interface names in internal form, 99
; character
meaning in field or method descriptor, 101
< character
in CONSTANT_Methodref_info and CONSTANT_InterfaceMethodref_info names, significance of, 106 
in names of <init> and <clinit> methods, 78
> character
in names of <init> and <clinit> methods, 78
[ character
meaning in field or method descriptor, 101
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A
aaload instruction

definition, 175
aastore instruction
compilation examples, arrays, 383 
constraints, structural, 139 
definition, 176
abrupt completion
method invocation, 74
abstract modifier
See also AbstractMethodError; ACC_ABSTRACT flag 
in class declarations, 28 
in method declarations, 32
AbstractMethodError
definition, 45 
thrown by
invokeinterface, 280 
invokespecial, 284 
invokevirtual, 291
thrown during method resolution, 168
ACC_ABSTRACT flag
See also abstract modifier 
(access_flags item of ClassFile structure), 96 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_FINAL flag
See also final modifier 
(access_flags item of ClassFile structure), 96 
(access_flags item of field_info structure), 113 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_INTERFACE flag
See also interfaces 
(access_flags item of ClassFile structure), 96 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_NATIVE flag
See also native modifier 
(access_flags item of method_info structure), 115
ACC_PRIVATE flag
See also private modifier 
(access_flags item of field_info structure), 113 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_PROTECTED flag
See also protected modifier 
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(access_flags item of field_info structure), 113 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_PUBLIC flag
See also public modifier 
(access_flags item of ClassFile structure), 96 
(access_flags item of field_info structure), 113 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_STATIC flag
See also static modifier 
(access_flags item of field_info structure), 113 
(access_flags item of method_info structure), 115 
(inner_class_access_flags item of InnerClasses_attribute structure), 127
ACC_STRICT flag
See also FP-strict floating-point mode, strictfp modifier 
(access_flags item of method_info structure), 115
ACC_SUPER flag
See also superclasses 
(access_flags item of ClassFile structure), 96
ACC_SYNCHRONIZED flag
See also synchronization 
(access_flags item of method_info structure), 115
ACC_TRANSIENT flag
See also transient modifier 
(access_flags item of field_info structure), 113
ACC_VOLATILE flag
See also volatile modifier 
(access_flags item of field_info structure), 113
access control
See also access_flags item, IllegalAccessError 
default access, 27 
during dynamic method lookup
invokeinterface, 280 
invokevirtual, 291
enforcement, 169 
final fields
putfield, 348 
putstatic, 350
instance initialization methods, 78 
package private access, 169 
private access, 27 
protected access, 27 
public access, 27 
qualified names and, 26
access_flags item
See also access control 
(ClassFile structure), 95 
(field_info structure), 112 
(method_info structure), 115
aconst_null instruction
definition, 178
actions
main memory subsystem
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lock, 399 
read, 398 
unlock, 399 
write, 399
prescient store, with threads, 404 
thread
assign, 398 
constraints on relationships among, 399 
load, 399 
lock, 399 
store, 399 
unlock, 399 
use, 399
adding
double, dadd, 198 
float, fadd, 228 
int, iadd, 260 
long, ladd, 309
algorithms
class file verification, 140 
conversion of bytes item, CONSTANT_Float_info structure, to float value, 107 
conversion of high_bytes and low_bytes items, CONSTANT_Double_info structure, to double value, 109 
creation and loading
array classes, 158, 161 
classes, 157 
interfaces, 158 
using a user-defined class loader, 160 
using the default class loader, 160
string literals, derivation of, 157
alignment
code array, 121 
Java virtual machine instructions, implementation implications, 80
aload instruction
See alsoastore instruction, wide instruction 
constraints, static, 136 
definition, 179
aload_<n> instructions
See also astore_<n> instructions 
compilation examples
arrays, 382 
catching exceptions, 388, 389, 391 
compiling finally, 392, 393, 394 
invoking methods, 376, 378 
operand stack operations, 386 
throwing exceptions, 387, 388 
working with class instances, 379, 380
constraints, static, 136 
definition, 180
ANDing
int, bitwise, iand, 262 
long, bitwise, land, 311
anewarray instruction
compilation examples, arrays, 382 
constraints, static, 136 
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definition, 181
areturn instruction
compilation examples
arrays, 383 
working with class instances, 379, 380
constraints, structural, 138 
definition, 182
arithmetic
adding
double, dadd, 198 
float, fadd, 228 
int, iadd, 260 
long, ladd, 309
ArithmeticException, 44
thrown by idiv, 265 
thrown by irem, 295 
thrown by ldiv, 318 
thrown by lrem, 326
compilation examples, 369 
dividing
double, ddiv, 205 
float, fdiv, 235 
int, idiv, 265 
long, ldiv, 318
exception, ArithmeticException, 44 
floating-point, 75 
instruction set, summary, 84 
multiplying
double, dmul, 209 
float, fmul, 239 
int, imul, 276 
long, lmul, 321
negating
double, dneg, 211 
float, fneg, 241 
int, ineg, 277 
long, lneg, 322
remainder
double, drem, 212 
float, frem, 212 
int, irem, 295 
long, lrem, 326
subtracting
double, dsub, 217 
float, fsub, 247 
int, isub, 301 
long, lsub, 332
ArithmeticException
definition, 44 
thrown by
idiv, 265 
irem, 295 
ldiv, 318 
lrem, 326
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array(s)
See also class(es); interfaces; references; types 
accessing, 39 
ArrayStoreException, 44 
classes of, 15 
compilation of, 381 
components, 38 
creating, 39
instruction summary, 88 
multidimensional, multianewarray, 339 
with components of primitive type, newarray, 343 
with components of reference type, anewarray, 181
creation of, classes, 158, 161 
definition, 38 
dimensions, number limitation, 153 
exceptions
ArrayIndexOutOfBoundsException, 39 
NegativeArraySizeException, 44
field descriptor
dimension limits on, 104 
specification, 101
initializing, 39 
length, 38
fetching, arraylength, 183
loading from
byte or boolean, baload, 188 
char, caload, 191 
double, daload, 200 
float, faload, 230 
int, iaload, 261 
long, laload, 310 
reference, aaload, 175 
short, saload, 354
manipulating, instruction summary, 88 
storing into
byte or boolean, bastore, 189 
char, castore, 192 
double, dastore, 201 
float, fastore, 231 
int, iastore, 263 
long, lastore, 312 
reference, aastore, 176 
short, sastore, 355
types, 11, 38
Java virtual machine mapping, 82
variables, 38
ArrayIndexOutOfBoundsException
See also IndexOutOfBoundsException 
thrown by
aaload, 175 
aastore, 177 
baload, 188 
bastore, 188 
caload, 191 
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castore, 192 
daload, 200 
dastore, 201 
faload, 230 
fastore, 231 
iaload, 261 
iastore, 263 
laload, 310 
lastore, 312 
saload, 354 
sastore, 355
arraylength instruction
definition, 183
ArrayStoreException
definition, 44 
thrown by aastore, 177
assembly language
Java virtual machine, format, 361
assignment
compatible, 13
failure, ArrayStoreException thrown when, 44
conversion, 21
assumptions
meaning of "must" in instruction descriptions, 171
astore instruction
See also aload instruction; ret instruction; wide instruction 
constraints, static, 136 
definition, 184
astore_<n> instructions
See also aload_<n> instructions; ret instruction 
compilation examples
arrays, 382 
catching exceptions, 388, 389, 391 
compiling finally, 392, 393, 394 
throwing exceptions, 388 
working with class instances, 379
constraints, static, 136 
definition, 185
athrow instruction
compilation examples
compiling finally, 392, 394 
throwing exceptions, 387
constraints, structural, 139 
definition, 186
attribute_info structure
(generic structure of items in attributes tables), 117
attribute_length item
(attribute_info generic structure), 117 
(Code_attribute structure), 121 
(ConstantValue_attribute structure), 119 
(Deprecated_attribute structure), 133 
(Exceptions_attribute structure), 124 
(InnerClasses_attribute structure), 125 
(LineNumberTable_attribute structure), 130 
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(LocalVariableTable_attribute structure), 131 
(SourceFile_attribute structure), 128 
(Synthetic_attribute structure), 128
attribute_name_index item
(attribute_info generic structure), 117 
(Code_attribute structure), 121 
(ConstantValue_attribute structure), 119 
(Deprecated_attribute structure), 133 
(Exceptions_attribute structure), 123 
(InnerClasses_attribute structure), 125 
(LineNumberTable_attribute structure), 129 
(LocalVariableTable_attribute structure), 131 
(SourceFile_attribute structure), 128 
(Synthetic_attribute structure), 128
attributes
See also ClassFile structure:
attribute_length item 
attribute_name_index item 
attributes table 
attributes_count item
See also predefined attributes:
Code_attribute 
ConstantValue_attribute 
Deprecated_attribute 
Exceptions_attribute 
InnerClasses_attribute 
LineNumberTable_attribute 
LocalVariableTable_attribute 
SourceFile_attribute 
Synthetic_attribute
defining and naming new, 118
attributes table
(ClassFile structure), 98 
(Code_attribute structure), 123 
(field_info structure), 114 
(method_info structure), 116
attributes_count item
(ClassFile structure), 98 
(Code_attribute structure), 123 
(field_info structure), 114 
(method_info structure), 116
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B
B character

meaning in field or method descriptor, 101
backwards branches
structural constraints on instructions, 138
baload instruction
definition, 188
bastore instruction
definition, 189
big-endian order
bytes item
(CONSTANT_Float_info structure), 107 
(CONSTANT_Integer_info structure), 107
class file data storage order, 93 
high_bytes and low_bytes items
(CONSTANT_Double_info structure), 109 
(CONSTANT_Long_info structure), 109
multibyte characters, CONSTANT_Utf8_info structure representation of, 110
binding
See also linking; loading; native modifier 
definition, 170 
instructions causing
invokeinterface, 280 
invokespecial, 284 
invokestatic, 288 
invokevirtual, 291
of native method implementations, 170
bipush instruction
compilation examples
accessing the runtime constant pool, 371 
arrays, 381 
constants and local variables in a for loop, 365, 366, 369 
invoking methods, 376, 377 
while loop, 372
definition, 190
bitwise
ANDing
int, iand, 262 
long, land, 309
ORing
int exclusive, ixor, 303 
int inclusive, ior, 294 
long exclusive, lxor, 334 
long inclusive, lor, 325
boolean type
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definition, 7 
loading from arrays, baload, 188 
storing into arrays, bastore, 189 
values of, 7
branch
code verification, Pass 3 - bytecode verifier, 142 
instruction summary, 88 
instructions, constraints, static, 134 
int comparison
if_icmp<cond>, 267 
with zero, if<cond>, 269
reference comparison
if_acmp<cond>, 266 
with null, ifnonnull, 271 
with null, ifnull, 272
unconditionally
goto, 252 
wide index, goto_w, 253
breakpoint reserved opcode
definition, 172
byte type
boolean array values represented as values of, 66 
converting int to, i2b, 254 
definition, 62 
instruction set handling of, 81 
integer arithmetic not directly supported, 84 
loading from arrays, baload, 188 
pushing, bipush, 190 
storing into arrays, bastore, 189 
value range, 63
bytes array
(CONSTANT_Utf8_info structure), 111
bytes item
(CONSTANT_Float_info structure), 107 
(CONSTANT_Integer_info structure), 107

Contents | Prev | Next | Index

The JavaTM Virtual Machine Specification
Copyright &#169 1999 Sun Microsystems, Inc. All rights reserved
Please send any comments or corrections to jvm@java.sun.com

 B

332

mailto:jvm@java.sun.com


Contents | Prev | Next | Index The JavaTM Virtual Machine Specification

symbols A B C D E F G H I J L M N O P Q R S T U V W Z

C
C character

meaning in field or method descriptor, 101
caload instruction
definition, 191
casting
See also numeric 
checkcast, 193 
checkcast instruction, constraints, static, 136 
exceptions, ClassCastException, checkcast, 194 
invocation conversion, context, 16 
not permitted between boolean types and other types, 11
castore instruction
definition, 192
catch clause(s)
See also exceptions 
exception handling role, 41, 78 
ordering of, 79 
try statement, exception handler parameter variables created by, 14
catch_type item
(Code_attribute structure), 122
char type
arithmetic not directly supported, 84 
converting int to, i2c, 255 
definition, 62 
instruction set handling of, 81 
loading from arrays, caload, 191 
storing into arrays, castore, 192 
value range, 63
checkcast instruction
See also instanceof instruction 
constraints, static, 136 
definition, 193
checking
types
checkcast, 193 
instanceof, 278
class file format
See also ClassFile structure 
byte storage order, 93 
(chapter), 93 
data, methods that can read, 93 
integrity verification, 140
class loader
bootstrap, 158 
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ClassLoader
<clinit> method, as class or interface initialization method, 78, 155 
loading performed by, 48
defining, 159 
delegating to another, 159 
initiating, 159 
loading 
by a user-defined, 160 
by the bootstrap, 160
loading constraints, 162 
user-defined, 158
class(es)
See also array; class file format; class loader; ClassFile structure; interfaces 
Class object, initialization role, 52 
ClassCastException, 44 
creation, 158 
declaration, 28 
derivation of symbolic references to at run time, 156 
final, 28 
finalization of, 57 
get static fields from, getstatic, 250 
initial, specifying to Java virtual machine, 46, 158 
initialization, process, unrecoverable runtime exceptions associated with, 44 
instances
creation expression, 12 
uninitialized, structural constraints, 135
libraries, Java virtual machine support for, 91 
members of, 29 
modifiers, 28 
names, name_index item
(CONSTANT_Class_info structure) as reference to, 104
put into static fields, putstatic, 350 
resolution, 166 
static methods
invocation instruction summary, 89 
invoking, invokestatic, 288
types, 11
compared with, 15 
members of, 25 
as reference type, 66
verification process, unrecoverable runtime exceptions associated with, 45
class_index item
(CONSTANT_Fieldref_info structure), 106 
(CONSTANT_InterfaceMethodref_info structure), 106 
(CONSTANT_Methodref_info structure), 106
ClassCastException
casting conversion as cause of, 23 
definition, 44 
narrowing reference conversion as cause of, 19 
thrown by checkcast, 194
ClassCircularityError
definition, 49 
as linking error, 45 
thrown during
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class or interface loading, 164 
class or interface resolution, 164
classes array
(InnerClasses_attribute_info structure), 125
ClassFile structure
See also ClassFile substructures:
access_flags item 
attributes table 
attributes_count item 
constant_pool table 
constant_pool_count item 
field_info structure 
fields table 
fields_count item 
interfaces array 
interfaces_count item 
magic item 
major_version item 
method_info structure 
methods table 
methods_count item 
minor_version item 
super_class item 
this_class item
constant_pool table, Java virtual machine representation, 70 
format
ability to read as Java virtual machine implementation requirement, 61 
as overview, 61
integrity verification, 140 
syntax and item descriptions, 93
ClassFormatError
definition, 49 
as linking error, 45
<clinit> method
as class or interface initialization method name, 78 
constant_pool table, reference to, 105 
invocation of, static constraints, 135 
name_index item (method_info structure) reference, 116
code
See also code array; Code_attribute structure 
blocks, synchronization, instruction summary, 90
code array
(Code_attribute structure)
constraints, static, 133 
constraints, structural, 137 
size and location, 120
data-flow analysis, 141
Code_attribute structure
(method_info structure), 120
code_length item
(Code_attribute structure), 121
comparisons
double, dcmp<op>, 202 
float, fcmp<op>, 232 
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int
if_icmp<cond>, 267 
with zero, if<cond>, 269
long, lcmp, 313 
numerical
floating-point positive and negative zero, 65 
implications of unordered NaN values, 65
reference
if_acmp<cond>, 266 
with null, ifnull, 271, 272
compilation
for the Java virtual machine, (chapter), 363 
Java virtual machine assembly language, format, 364
completion
method invocation
abrupt, 74 
normal, 74
computational type
definition, 82
conditional
See also control flow 
branch, instruction summary, 89
CONSTANT_Class_info structure
class names referenced from, 99 
(constant_pool table), items and meaning, 103 
derivation of symbolic reference from at run time, 156 
super_class item, as ClassFile structure reference to a, 97 
this_class item, as ClassFile structure reference to a, 97
CONSTANT_Class tag
(CONSTANT_class_info structure), 104
CONSTANT_Double_info structure
(constant_pool table), items and meaning, 108 
derivation of constant value from at run time, 157
CONSTANT_Double tag
(CONSTANT_Double_info structure), 108
CONSTANT_Fieldref_info structure
(constant_pool table), items and meaning, 105 
derivation of symbolic reference from at run time, 156
CONSTANT_Fieldref tag
(CONSTANT_Fieldref_info structure), 105
CONSTANT_Float_info structure
(constant_pool table), items and meaning, 107 
derivation of constant value at run time, 157
CONSTANT_Float tag
(CONSTANT_float_info structure), 107
CONSTANT_Integer_info structure
(constant_pool table), items and meaning, 107 
derivation of constant values at run time, 157
CONSTANT_Integer tag
(CONSTANT_Integer_info structure), 107
CONSTANT_InterfaceMethodref_info structure
(constant_pool table), items and meaning, 105 
derivation of symbolic reference from at run time, 156
CONSTANT_InterfaceMethodref tag
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(CONSTANT_InterfaceMethodref_info structure), 105
CONSTANT_Long_info structure
(constant_pool table), items and meaning, 109 
derivation of constant value at run time, 157
CONSTANT_Long tag
(CONSTANT_Long_info structure), 108
CONSTANT_Methodref_info structure
(constant_pool table), items and meaning, 105 
derivation of symbolic reference from at run time, 156
CONSTANT_Methodref tag
(CONSTANT_Methodref_info structure), 105
CONSTANT_NameAndType_info structure
class names referenced from, 99 
(constant_pool table), items and meaning, 110 
derivation of symbolic reference from at run time, 157 
indirect use of at run time, 157
CONSTANT_NameAndType tag
(CONSTANT_NameAndType_info structure), 110
constant_pool_count item
(ClassFile structure), 95
constant_pool table
(ClassFile structure), 95, 103 
constantvalue_index item values (table), 119 
derivation of symbolic references from at run time, 155 
tag values (table), 103
CONSTANT_String_info structure
(constant_pool table), items and meaning, 106 
derivation of symbolic reference from at run time, 157
CONSTANT_String tag
(CONSTANT_String_info structure), 106
CONSTANT_Utf8_info structure
attribute_name_index item
(Code_attribute structure), 121 
(ConstantValue_attribute structure), 119 
(Exceptions_attribute structure), 124 
(InnerClasses_attribute structure), 125 
(LineNumberTable_attribute structure), 130 
(LocalVariableTable_attribute structure), 131 
(SourceFile_attribute structure), 117, 128 
(Deprecated_attribute structure), 133 
(Synthetic_attribute structure), 128
class names represented as, 99 
(constant_pool table), items and meaning, 112 
indirect use of at run time, 158 
(name_index item)
(CONSTANT_Class_info structure) as reference to a, 104
(string_index item)
(CONSTANT_String_info structure) as a reference to, 107
CONSTANT_Utf8 tag
(CONSTANT_Utf8_info structure), 111
constants
See also constant_pool table; literals; variables 
attribute type values (table), 119 
constant pool, class file format
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size limitation, 152 
static constraint checking, 140
CONSTANT_Class_info structure
derivation of symbolic reference from at run time, 156 
items and meaning, 104
CONSTANT_Double_info structure
derivation of constant value from at run time, 157 
items and meaning, 108
CONSTANT_Fieldref_info structure
derivation of symbolic reference from at run time, 156 
items and meaning, 106
CONSTANT_Float_info structure
derivation of constant value from at run time, 157 
items and meaning, 107
CONSTANT_Integer_info structure
derivation of constant value from at run time, 157 
items and meaning, 107
CONSTANT_InterfaceMethodref_info structure
derivation of symbolic reference from at run time, 156 
items and meaning, 106
CONSTANT_Long_info structure
derivation of constant value from at run time, 157 
items and meaning, 109
CONSTANT_Methodref_info structure
derivation of symbolic reference from at run time, 156 
items and meaning, 106
CONSTANT_NameAndType_info structure
indirect use of at run time, 157 
items and meaning, 110
CONSTANT_String_info structure
derivation of symbolic reference from at run time, 157 
items and meaning, 106
CONSTANT_Utf8_info structure
descriptor_index item, CONSTANT_NameAndType_info reference, 110 
indirect use of at run time, 158 
items and meaning, 110
ConstantValue_attribute structure
field_info structure value, 114 
support required for, 118
fields, 36
as interface members, 35 
final, 30
floating-point
double, CONSTANT_Double_info structure representation, 108 
float, CONSTANT_Float_info structure representation, 107
increment local variable by, iinc, 273 
integer
int, CONSTANT_Integer_info structure representation, 107 
long, CONSTANT_Long_info structure representation, 108
load and store instructions, summary, 83 
pushing
double, dconst_<d>, 204 
float, fconst_<f>, 234 
int, iconst_<i>, 264 
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ldc, 315 
long, lconst_<l>, 314 
wide index, ldc_w, 316
runtime constant pool, 70
derivation of, 155 
frame reference, dynamic linking supported by, 71, 74
ConstantValue_attribute structure
(attributes table of field_info structure), 114 
(field_info structure), 119
constantvalue_index structure
(ConstantValue_attribute structure), 119
constraints
class loading, 162 
enforcement of, by class file verifier, 171 
Java virtual machine code
static, specification of, 133 
structural, specification of, 137
operand stack manipulation, 73
constructors
default, 34 
definition, 34 
instance creation procedures, 55 
as instance initialization method, 78 
not members of a class, 29
control flow
See also threads 
branch on
int comparison with zero, if<cond>, 269 
int comparison, if_icmp<cond>, 267 
reference comparison with null, ifnonnull, 271 
reference comparison with null, ifnull, 272 
reference comparison, if_acmp<cond>, 266
compilation examples, for keyword, 366 
compilation of, while keyword, 372 
instruction summary, 88 
instructions, code verification, Pass 3 - bytecode verifier, 142 
unconditional goto
goto, 252 
wide index, goto_w, 253
conversions
See also numeric; primitive types 
assignment, 21 
bytes item, CONSTANT_Float_info structure, algorithm, 107 
casting, 23 
contexts, 16 
method invocation, 22 
narrowing primitive
definition, 18 
double to float, d2f, 195 
double to int, d2i, 196 
double to long, d2l, 197 
float to int, f2i, 226 
float to long, f2l, 227 
impact on precision, 87 
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int to byte, i2b, 254 
int to char, i2c, 255 
int to short, i2s, 259 
long to int, l2i, 308 
support for, 86
narrowing reference, 19 
numeric promotion
binary, 23 
unary, 23
types, 17
instructions, 86
value set, 77 
widening primitive
definition, 17 
float to double, f2d, 225 
impact on numeric precision, 86 
int to double, i2d, 256 
int to float, i2f, 257 
int to long, i2l, 258 
long to double, l2d, 306 
long to float, l2f, 307 
support for, 86
widening reference, 19
cp_info structure
(generic form of items in the constant_pool table), 103 
tag values (table), 101, 103
creating
array classes, 158, 161 
arrays
multidimensional, multianewarray, 339 
primitive type, newarray, 343 
reference type, anewarray, 181
class instances
instruction summary, 88 
new, 341
classes and interfaces, 158
current
class, 72 
frame, 71 
method, 71
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D
D character

meaning in field or method descriptor, 101
d2f instruction
definition, 195
d2i instruction
definition, 196
d2l instruction
definition, 197
dadd instruction
compilation examples
constants and local variables in a for loop, 367, 368 
while loop, 373
definition, 198
daload instruction
definition, 200
dastore instruction
definition, 201
data
areas, runtime
constant pool, 70 
heap, 68 
Java virtual machine stack, 67 
method area, 69 
native method stacks, 70 
pc register, 67
types, Java virtual machine, 61
data types
See also
boolean type 
byte type 
char type 
constant_pool table 
double type 
fields table 
float type 
int type 
integral 
long type 
null type 
reference type 
returnAddress type 
short type 
String type
arguments, structural constraints on instructions, 137 
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checking
checkcast, 193 
instanceof, 278
conversion
and numeric promotion impact on, 16 
instructions, 86
Java programming language
categories, 7 
classes compared with, 15 
numeric, 7 
primitive, 7
Java virtual machine
instruction set encoding of, 80 
mapping between storage types and computational types (table), 82 
support for (table), 82
data-flow analysis
code array, 141 
running, Pass 3 - bytecode verifier, 144
dcmp<op> instructions
compilation examples
constants and local variables in a for loop, 367 
while loop, 373, 374
compilation examples, while loop, 374 
definition, 202
dconst_<d> instructions
compilation examples
constants and local variables in a for loop, 367 
while loop, 373
definition, 204
ddiv instruction
definition, 205
debugging
breakpoint reserved opcode, 172 
Java virtual machine implementation issues, 92
defineClass method
ClassLoader class, creation of classes and interfaces by, 161
delegation
to another class loader, 159
denormalized numbers
definition, 11
Deprecated_attribute structure
(attributes table of field_info, method_info, or ClassFile structures), 132 
(field_info structure), 114
descriptor_index item
(CONSTANT_NameAndType_info structure), 110 
(field_info structure), 114 
(LocalVariableTable_attribute structure), 130 
(method_info structure), 115
descriptors
characteristics and use, 99 
field
structural constraints on instructions, 137, 138 
syntax and item descriptions, 99 
as value of CONSTANT_Utf8_info structure referenced by descriptor_index item,
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CONSTANT_NameAndType_info structure, 110 
as value of CONSTANT_Utf8_info structure referenced by descriptor_index item, field_info structure, 114
grammar for specification of, 99 
method
argument number limitation, 153 
syntax and item descriptions, 102 
as value of CONSTANT_Utf8_info structure referenced by descriptor_index item,
CONSTANT_NameAndType_info structure, 110
direct
directly implement, 35 
extension, 35 
subclass, 29 
superclass, 29
dividing
double, ddiv, 205 
float, fdiv, 235 
int, idiv, 265 
long, ldiv, 318
dload instruction
constraints, static, 136 
definition, 207
dload_<n> instructions
compilation examples
constants and local variables in a for loop, 367, 368 
while loop, 373
constraints, static, 136 
definition, 208
dmul instruction
definition, 209
dneg instruction
definition, 211
double type
See also floating-point 
adding, dadd, 198 
comparing, dcmp<op>, 202 
compilation examples, 367 
converting
float to, f2d, 225 
int to, i2d, 256 
long to, l2d, 306 
to float, d2f, 195 
to long, d2l, 197
definition, 62 
dividing, ddiv, 205 
double value set, 63 
double-extended-exponent value set, 64 
field descriptor specification, 100 
loading from
arrays, daload, 200 
local variables, dload, 207 
local variables, dload_<n>, 208
multiplying, dmul, 209 
negating, dneg, 211 
pushing constants, dconst_<d>, 204 
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pushing, wide index, ldc2_w, 317 
remainder, drem, 212 
representation in constant pool, 109 
returning from method invocation, dreturn, 214 
storing into
arrays, dastore, 201 
local variables, dstore, 215 
local variables, dstore_<n>, 216
subtracting, dsub, 217
double value set
definition, 63 
parameters (table), 64
double-extended-exponent value set
definition, 64 
parameters (table), 64
drem instruction
definition, 212
dreturn instruction
compilation examples, constants and local variables in a for loop, 368 
constraints, structural, 137 
definition, 214
dstore instruction
compilation examples, accessing the runtime constant pool, 371 
constraints, static, 136 
definition, 215
dstore_<n> instructions
compilation examples
constants and local variables in a for loop, 367 
while loop, 373
constraints, static, 136 
definition, 216
dsub instruction
definition, 217
dup instruction
compilation examples
arrays, 383 
operand stack operations, 386 
throwing exceptions, 387 
working with class instances, 379
definition, 218
dup instructions
operand stack manipulation constraints, 73
dup_x1 instruction
definition, 219
dup_x2 instruction
definition, 220
dup2 instruction
definition, 221
dup2_x1 instruction
compilation examples
operand stack operations, 386
definition, 222
dup2_x2 instruction
definition, 223
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duplicating
See also dup instructions 
operand stack value(s)
dup, 218 
dup_x1, 219 
dup_x2, 220 
dup2, 221 
dup2_x1, 222 
dup2_x2, 223
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E
end_pc item

(Code_attribute structure), 120
entering
See also locks; monitor 
monitor for object, monitorenter, 335
Error
as Throwable class direct subclass, 43 
thrown by
getstatic, 251 
invokestatic, 290 
new, 342 
putstatic, 351
as unrecoverable runtime exception class, 44
errors
See also exceptions 
handling, exceptions use for, 40 
heap-related, OutOfMemoryError, 69 
Java virtual machine stack-related
OutOfMemoryError, 68 
StackOverflowError, 68
loading, 48 
method area-related, OutOfMemoryError, 69 
native method stack-related
OutOfMemoryError, 71 
StackOverflowError, 71
preparation, 49 
throwing, athrow, 186 
verification, 49
Exception
as Throwable class direct subclass, 43
exception_index_table array
(Exceptions_attribute structure), 124
exception_table array
(Code_attribute structure), 120
exception_table_length item
(Code_attribute structure), 120
exceptions
See also catch clause(s); errors; try-catch-finally statement; try-finally statement 
abrupt completion, 74 
asynchronous, reasons for and handling of, 43 
causes of, 40 
definition, 39 
dispatching, frame use for, 71 
(Exceptions_attribute structure), support required for, 116 
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handling, 41
by Java virtual machine, 78 
code verification, Pass 3 - bytecode verifier, 143 
instruction summary, 90 
structural constraints on instructions, 138
normal completion, characterized by lack of, 74 
requirements for throwing, 123 
standard unchecked runtime, list of unrecoverable, 45 
throwing, athrow, 186
Exceptions_attribute structure
(method_info structure), 123
execution
order, thread rules, 399 
paths, structural constraints on instructions, 137 
program, life cycle, 46
exiting
See also Java virtual machine; locks; monitor 
exit method, Java virtual machine exit activated by, 57 
Java virtual machine, conditions for, 57 
monitor for object, monitorexit, 337
extend
local variable index by additional bytes, wide, 360
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F
F character

meaning in field or method descriptor, 101
f2d instruction
definition, 225
f2i instruction
definition, 226
f2l instruction
definition, 227
fadd instruction
definition, 228
faload instruction
definition, 230
fastore instruction
definition, 231
fcmp<op> instructions
definition, 232
fconst_<f> instructions
definition, 234
fdiv instruction
definition, 235
fields
See also constants; data types; fields table; methods; variables 
access expressions, access control and, 26 
class, field_info structure access flags, 112 
constant, 52 
constant pool references, verification process, 141 
constants, as interface members, 35 
creation and manipulation, instruction summary, 88 
definition, 29 
derivation of symbolic references to at run time, 156 
descriptor
syntax and meaning, 100 
as value of CONSTANT_Utf8_info structure referred by descriptor_index item,
CONSTANT_NameAndType_info structure, 110
get from class instances, getfield, 248 
initialization of, 31 
interface, field_info structure access flags, 112 
length as array type member, 26 
lookup, 167 
modifiers, 30 
number limitation, 152 
protected structural constraints, 138 
put into class instances, putfield, 348 
references, resolution, 167 
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resolution, 167 
static
get from classes, getstatic, 250 
put into classes, putstatic, 350
types, 101
fields table
(ClassFile structure), 98
fields_count item
(ClassFile structure), 97
final modifier
See also ACC_FINAL flag 
class
definition, 28 
enforcement, 141, 291
field
definition, 30 
enforcement, putfield, 348 
enforcement, putstatic, 350
method
definition, 33 
enforcement, 141
finalization
of class instances, finalize method, 56
finally clause
data-flow analysis during class file verification, 151 
exception handling role, 42 
implementation of
in catch_type item (Code_attribute structure), 122 
instruction summary, 90
try-finally clause, Sun's Java compiler output characteristics, 149 
uninitialized object restrictions, Pass 3 - bytecode verifier, 148
findSystemClass method
ClassLoader class, loading of classes and interfaces by, 161
fload instruction
See also wide instruction 
constraints, static, 136 
definition, 237
fload_<n> instructions
constraints, static, 136 
definition, 238
float type
See also floating-point 
adding, fadd, 228 
comparing, fcmp<op>, 233 
converting
double to, d2f, 195 
int to, i2f, 257 
long to, l2f, 307 
to double, f2d, 225 
to int, f2i, 226 
to long, f2l, 227
dividing, fdiv, 235 
float value set, 63 
float-extended-exponent value set, 64 
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loading from
arrays, faload, 230 
local variables, fload, 237 
local variables, fload_<n>, 238
multiplying, fmul, 239 
negating, fneg, 241 
pushing constants, fconst_<f>, 234 
remainder, frem, 242 
representation in constant pool, 107 
returning from method invocation, freturn, 244 
storing into
arrays, fastore, 231 
local variables, fstore, 245 
local variables, fstore_<n>, 246
subtracting, fsub, 247
float value set
definition, 63 
parameters (table), 64
float-extended-exponent value set
definition, 64 
parameters (table), 64
floating-point
comparison, IEEE 754 conformance, 85, 89 
types
components, and values, 7, 63 
underflow and overflow, Java virtual machine handling, 85
fmul instruction
definition, 239
fneg instruction
definition, 241
for keyword
compilation examples, 365
forward slashes (/)
in class and interface names in internal form, 99
FP-strict floating point mode
definition, 76
frames
See also stacks 
definition, 71 
exception handling impact on, 79 
local variables, 72
frem instruction
definition, 242
freturn instruction
constraints, structural, 138 
definition, 244
fstore instruction
constraints, static, 136 
definition, 245
fstore_<n> instructions
constraints, static, 136 
definition, 246
fsub instruction
definition, 247
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G
garbage collection

algorithm, not specified by Java virtual machine specification, 61 
as implementation of automatic storage management system, 68 
method area relationship to, 69
getfield instruction
compilation examples
operand stack operations, 386 
working with class instances, 380
constraints
static, 135 
structural, 138
definition, 248
getstatic instruction
constraints, static, 135 
definition, 250
goto instruction
compilation examples
compiling finally, 393 
constants and local variables in a for loop, 365, 367, 369 
while loop, 372, 373
constraints, static, 134 
definition, 252, 253
goto_w instruction
constraints, static, 134 
definition, 253
gradual underflow
conformance
add double, dadd, 198 
add float, fadd, 228
definition, 11 
dividing
double conformance, ddiv, 205 
float conformance, fdiv, 235
multiplying
double conformance, dmul, 209 
float conformance, fmul, 239
subtracting
double conformance, dsub, 217 
float conformance, fsub, 247
grammar
descriptor specification, 99
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H
handler_pc item

(exception_table array of Code_attribute structure), 122
handling an exception
definition, 41 
by Java virtual machine, 79
hash sign (#)
use in compilation examples, 364
heap
See also memory 
definition, 12, 68 
errors, OutOfMemoryError, 69
high_bytes item
(CONSTANT_Double_info structure), 109
high_bytes item
(CONSTANT_Long_info structure), 109
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I
I character

meaning in field or method descriptor, 101
i2b instruction
definition, 254
i2c instruction
definition, 255
i2d instruction
definition, 256
i2f instruction
definition, 257
i2l instruction
definition, 258
i2s instruction
compilation examples, constants and local variables in a for loop, 369 
definition, 259
iadd instruction
compilation examples
arithmetic, 369 
constants and local variables in a for loop, 369 
receiving arguments, 375
definition, 260
iaload instruction
compilation examples, arrays, 382 
definition, 261
iand instruction
compilation examples, arithmetic, 369 
definition, 262
iastore instruction
compilation examples, arrays, 382 
definition, 263
iconst_<i> instructions
compilation examples
arithmetic, 369 
arrays, 383 
compiling switches, 384 
constants and local variables in a for loop, 365, 369 
operand stack operations, 386 
while loop, 372, 374
definition, 264
identifiers
definition, 6 
as value of CONSTANT_Utf8_info structure
referenced by name_index item (CONSTANT_NameAndType_info structure), 110 
referenced by name_index item (field_info structure), 113 
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referenced by name_index item (method_info structure), 116
idiv instruction
definition, 265
IEEE 754 standard
bibliographic reference, 75 
comparing
double conformance, dcmp<op>, 202 
float conformance, fcmp<op>, 232
conformance
add double dadd, 198 
add float, fadd, 228
dividing
double conformance, ddiv, 205 
float conformance, fdiv, 235
floating-point
double bit layout, high_bytes and low_bytes items, CONSTANT_Double_info structure, 108 
operation conformance to, 85
key differences between Java virtual machine and, 75 
multiplying
double conformance, dmul, 209 
float conformance, fmul, 239
remainder
drem not the same as, drem, 212 
frem not the same as, frem, 242
subtracting
double conformance, dsub, 217 
float conformance, fsub, 247
if<cond> instructions
compilation examples
constants and local variables in a for loop, 367 
throwing exceptions, 387 
while loop, 373, 374, 375
constraints, static, 134 
definition, 269
if_acmp<cond> instructions
constraints, static, 134 
definition, 266
if_icmp<cond> instructions
compilation examples
constants and local variables in a for loop, 365, 367, 369 
while loop, 372
constraints, static, 134 
definition, 267
ifnonnull instruction
constraints, static, 134 
definition, 271
ifnull instruction
compilation examples, working with class instances, 379 
constraints, static, 134 
definition, 272
iinc instruction
compilation examples
constants and local variables in a for loop, 365, 366 
while loop, 372
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constraints, static, 136 
definition, 273
IllegalAccessError
definition, 50 
as linking error, 45 
thrown by
invokeinterface, 282 
multianewarray, 340 
putfield, 349 
putstatic, 351
thrown during
class or interface resolution, 167 
field resolution, 167 
method resolution, 168
IllegalMonitorStateException
definition, 44 
thrown by
areturn, 182 
athrow, 187 
dreturn, 214 
freturn, 244 
ireturn, 296 
lreturn, 327 
monitorexit, 337 
return, 353
iload instruction
See also istore instruction; wide instruction 
constraints, static, 136 
definition, 274
iload_<n> instructions
See also istore_<n> instructions 
compilation examples
arithmetic, 370 
arrays, 382 
compiling switches, 384, 385 
constants and local variables in a for loop, 365, 366, 369 
receiving arguments, 375 
throwing exceptions, 387 
while loop, 372 
working with class instances, 381
constraints, static, 136 
definition, 275
impdep1 reserved opcode
definition, 172
impdep2 reserved opcode
definition, 172
implementation
attributes
optional, handling, 116 
predefined, support requirements, 116
considerations
exception handling, 124 
frames, extensions permitted, 75 
heap, 68 
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Java virtual machine stack, 67 
method area, 69 
native method stacks, 70 
operand stacks, 73 
runtime constant pool, 70
constraint enforcement strategies, 171 
constraints
Java virtual machine code, static, 133 
Java virtual machine code, structural, 137
implications, opcode design and alignment, 80 
Java virtual machine, strategies and requirements, 91 
object representation, 75 
optimization, alternative instruction use, 143 
requirements and non-requirements, 61 
Sun's JDK and Java 2 SDK
boolean arrays as byte arrays, 66 
heap, 68 
Java virtual machine stack, 67 
Java virtual machine stack, size limit use, 68 
line number - source code mapping issues, 130 
method area, 69
imul instruction
definition, 276
IncompatibleClassChangeError
definition, 50 
thrown by
getfield, 248 
getstatic, 250 
invokeinterface, 282 
invokespecial, 286 
invokestatic, 290 
invokevirtual, 293 
putfield, 349 
putstatic, 351
thrown during
class or interface loading, 163 
class or interface resolution, 164 
interface method resolution, 169 
method resolution, 168
increment
local variable by constant, iinc, 273
index item
(LocalVariableTable_attribute structure), 131
IndexOutOfBoundsException
definition, 44
ineg instruction
definition, 277
info array
(attribute_info generic structure), 117
<init> method
constant_pool reference to, 106 
as instance initialization method name, 78 
invocation of
static constraints, 135 
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structural constraints, 137
method_info structure access flags, 115 
name_index item (method_info) reference, 116
initial class
definition, 158
initialization
See also <clinit> method; <init> method 
(chapter), 155 
class or interface, reasons for
getstatic, 170 
initial class, 170 
initialization of a subclass, 170 
invokestatic, 170 
new, 170 
putstatic, 170 
reflection, 170
definition, 51 
detailed procedure description, 52 
instance, data-flow analysis during class file verification, 146 
instance, structural constraints on instructions, 136 
method
class or interface (<clinit>), 78 
instance (<init>), 78
overview, 48 
static initializers, 33 
when initiated, 51, 170
inner_class_access_flags item
(classes array of InnerClasses_attribute structure), 126
inner_class_info_index item
(classes array of InnerClasses_attribute structure), 126
inner_name_index item
(classes array of InnerClasses_attribute structure), 126
InnerClasses_attribute structure
(elements of attributes table of ClassFile structure), 125
instanceof instruction
definition, 278
instances
See also array 
creating
new, 341
creation, 54
instruction summary, 88 
situations that cause the, 54
definition, 12 
determining if an object is a particular type, instanceof, 278 
enter monitor for, monitorenter, 335 
exiting monitor for, monitorexit, 337 
field descriptor specifications, 101 
getting values of fields from, getfield, 248 
initialization
data-flow analysis during class file verification, 147 
field_info structure access flags, 112 
structural constraints on instructions, 137
instanceof instruction, constraints, static, 136 
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Java virtual machine support for, 62 
manipulation, instruction summary, 88 
methods, 33
accessing, structural constraints on instructions, 138 
data-flow analysis during class file verification, 147 
invoking, instruction summary, 89 
invoking, invokespecial, 284 
invoking, invokevirtual, 291 
method_info structure access flags, 115
putting values of fields into, putfield, 348 
reference type relationship to, 62 
this object role in creation of, 55 
uninitialized, restrictions, Pass 3 - bytecode verifier, 147 
unreachable, finalization of, 57 
variables, 13
accessing, structural constraints on instruction, 138 
getfield, 248 
putting fields into putfield, 348
InstantiationError
definition, 51 
as linking error, 45 
thrown by new, 341
instructions
alternative forms, optimization use of, 143 
constraints, static, 134 
Java virtual machine instruction set execution loop, 80
format, 61
load summary, 83 
opcodes
data-flow analysis, 142 
verification process, 143
operands, verification process, 143 
set
arithmetic, summary, 84 
notation for families of, 84 
summary, 80 
type encoding limitations of, 80
int type
adding, iadd, 260 
ANDing, bitwise, iand, 262 
branch int comparison
if_icmp<cond>, 267 
with zero, if<cond>, 269
converting
double to, d2i, 196 
float to, f2i, 226 
to byte, i2b, 254 
to char, i2c, 255 
to double, i2d, 256 
to float, i2f, 256, 257 
to long, i2l, 258 
to short, i2f, 259
definition, 62 
dividing, idiv, 265 
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instruction set handling of, 81 
loading from
arrays, iaload, 261 
local variables, iload, 274 
local variables, iload_<n>, 275
multiplying, imul, 276 
negating, ineg, 277 
ORing
bitwise, exclusive, ixor, 303 
bitwise, inclusive, ior, 294
pushing constants, iconst_<i>, 264 
remainder, irem, 295 
returning from method invocation, ireturn, 296 
shift left, arithmetic, ishl, 297 
shift right
arithmetic, ishr, 298 
logical, iushr, 302
storing into
arrays, iastore, 263 
local variables, istore, 299 
local variables, istore_<n>, 300
subtracting, isub, 301 
value range, 63
integral
types
definition, 62 
values, 63
interfaces
See also ACC_INTERFACE flag; array; class(es); interfaces array, ClassFile structure 
creation, 158 
definition, 35 
derivation of symbolic references to at run time, 156 
extends clause use, 36 
fields, 36 
implements clause use, 36 
members, 36 
methods
derivation of symbolic references to at run time, 156 
invocation instruction summary, 89 
invoking, invokeinterface, 280 
method_info structure access flags, 114 
resolution, 168
modifiers, 35 
resolution, 166 
types, 11
implications for variables and expressions, 15 
as reference type, 66
interfaces array
(ClassFile structure), 97
interfaces_count item
(ClassFile structure), 97
intern method
String class, 6, 157
InternalError
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as asynchronous exception cause, 43 
as Java Virtual machine error, 45
invokeinterface instruction
constraints, static, 135 
definition, 280
invokespecial instruction
See also ACC_SUPER modifier 
access flag use to select alternative semantics, 96 
compilation examples
arrays, 383 
invoking methods, 378 
throwing exceptions, 387 
working with class instances, 379
constraints
static, 135 
structural, 137
definition, 284 
instance initialization by, 78
invokestatic instruction
compilation examples, invoking methods, 377 
constraints, static, 135 
definition, 288
invokevirtual instruction
compilation examples
catching exceptions, 388, 389, 390 
compiling finally, 392, 393, 394 
invoking methods, 376 
throwing exceptions, 387, 388 
working with class instances, 380
constraints, static, 135 
definition, 291
invoking
methods
class, invokestatic, 288 
instance, invokespecial, 284 
instance, invokevirtual, 291 
interface, invokeinterface, 280
ior instruction
definition, 294
irem instruction
definition, 295
ireturn instruction
compilation examples
arithmetic, 370 
compiling switches, 384, 385 
invoking methods, 376, 377, 378 
receiving arguments, 375 
while loop, 374
constraints, structural, 138 
definition, 296
ishl instruction
definition, 297
ishr instruction
definition, 298
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istore instruction
See also iload instruction 
constraints, static, 136 
definition, 299
istore_<n> instructions
See also iload_<n> instructions 
compilation examples
accessing the runtime constant pool, 371 
arrays, 382 
constants and local variables in a for loop, 365, 369 
while loop, 372
constraints, static, 136 
definition, 300
isub instruction
compilation examples, arithmetic, 370 
definition, 301
items
class file items, 93
iushr instruction
definition, 302
ixor instruction
compilation examples, arithmetic, 370 
definition, 303
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J
J character

meaning in field or method descriptor, 101
Java programming language
concepts, (chapter), 5
Java virtual machine
assembly language, format, 364 
compiling for, (chapter), 363 
life cycle, 46, 158 
startup, 46, 158 
structure of (chapter), 61 
unrecoverable runtime exceptions associated with, 44
Java virtual machine stack
definition, 67
JIT (just-in-time) code generation
Java virtual machine implementation issues, 92, 363
jsr instruction
compilation examples, compiling finally, 392, 393 
constraints
static, 134 
structural, 139
definition, 304 
returnAddress type used by, 66 
try-finally clause implementation use, Sun's Java compiler output characteristics, 149
jsr_w instruction
constraints
static, 134 
structural, 134
definition, 305 
returnAddress type used by, 66
jump table
access
by index and jump, tableswitch, 358 
by key match and jump, lookupswitch, 323
alignment concerns, 121
jump to subroutine instructions
constraints, static, 134 
jsr, 304 
wide index, jsr_w, 305
JVM
See Java virtual machine
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L
L character

meaning in field or method descriptor, 101
L<classname>;
meaning in field or method descriptor, 101
l2d instruction
definition, 306
l2f instruction
definition, 307
ladd instruction
compilation examples, operand stack operations, 386 
definition, 309
laload instruction
definition, 310
land instruction
definition, 311
lastore instruction
definition, 312
lcmp instruction
definition, 313
lconst_<l> instructions
compilation examples
accessing the runtime constant pool, 371 
operand stack operations, 386
definition, 314
ldc instruction
compilation examples, accessing the runtime constant pool, 371 
constraints, static, 135 
definition, 315
ldc_w instruction
constraints, static, 135 
definition, 316
ldc2_w instruction
compilation examples
accessing the runtime constant pool, 371 
constants and local variables in a for loop, 367 
while loop, 373, 374
constraints, static, 135 
definition, 317
ldiv instruction
definition, 318
left angle bracket <
in CONSTANT_Methodref_info and CONSTANT_InterfaceMethodref_info names, significance of, 106
left parentheses (
meaning in method descriptor, 102
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left square bracket [
meaning in field or method descriptor, 101
length item
(CONSTANT_Utf8_info structure), 111 
(LocalVariableTable_attribute structure), 131
limitations
Java virtual machine, 152
line_number item
(line_number_table array of LineNumberTable_attribute structure), 129
line_number_table array
(LineNumberTable_attribute structure), 130
line_number_table_length item
(LineNumberTable_attribute structure), 130
LineNumberTable_attribute structure
(attributes table of Code_attribute structure), 129
LinkageError
definition, 49, 50 
as unrecoverable runtime exception class, 44 
verification pass 4 occurrence of, 143
linking
See also binding; preparation; resolution; verification 
(chapter), 155 
class files verification issues, 140 
definition, 49, 164 
dynamic, frame use for, 71 
errors
IllegalAccessError, 45 
InstantiationError, 45 
LinkageError, as unrecoverable runtime exception class, 45 
LinkageError, loading errors thrown by, 49 
LinkageError, verification errors thrown by, 50 
LinkageError, verification pass 4 occurrence, 143 
NoSuchFieldError, 45 
NoSuchMethodError, 45
overview, 47 
unrecoverable runtime exceptions associated with, 44
literals
See also constants; strings; variables 
definition, 6 
false, 6 
null, 6 
strings, resolution of, 157 
true, 6
lload instruction
definition, 319
lload_<n> instructions
definition, 320
lmul instruction
definition, 321
lneg instruction
definition, 322
loadClass method
ClassLoader class, loading of classes and interfaces by, 161
loading
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See also class loader; linking; verification 
(chapter), 155 
class or interface, 158 
class or interface, errors
ClassCircularityError, 164 
IncompatibleClassChange- Error, 164 
NoClassDefFoundError, 160, 163
constraints, 162 
definition, 48 
delegation, 159 
from arrays of type
byte or boolean, baload, 188 
char, caload, 191 
double, daload, 200 
float, faload, 230 
int, iaload, 261 
long, laload, 308 
reference, aaload, 175 
short, saload, 354
from local variables of type
double, dload, 207 
double, dload_<n>, 208 
float, fload, 237 
float, fload_<n>, 238 
int, iload, 274 
int, iload_<n>, 275 
long, lload, 319 
long, lload_<n>, 320 
reference, aload, 179 
reference, aload_<n>, 180
overview, 46 
unrecoverable runtime exceptions associated with, 44
local_variable_table array
(LocalVariableTable_attribute structure), 131
local_variable_table_length item
(LocalVariableTable_attribute structure), 131
local variables
See also parameters; variables 
accessing, structural constraints on instructions, 138 
code verification, Pass 3 - bytecode verifier, 143 
compilation examples, 365 
data-flow analysis, 142 
definition, 14, 72 
exception handling impact on, 79 
instructions
for accessing more, summary, 83 
load and store, summary, 83 
specialized to handle, advantages of, 366
loading from
double, dload, 207 
double, dload_<n>, 208 
float, fload, 237 
float, fload_<n>, 238 
int, iload, 274 
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int, iload_<n>, 275 
long, lload, 319 
long, lload_<n>, 320 
reference, aload, 179 
reference, aload_<n>, 180
location of, 131 
maximum number, 121 
reuse, advantages of, 366 
states, merging, during data-flow analysis, 145 
storing into
double, dstore, 215 
double, dstore_<n>, 216 
float, fstore, 245 
float, fstore_<n>, 246 
int, istore, 299 
int, istore_<n>, 300 
long, lstore, 330 
long, lstore_<n>, 331 
reference, astore, 184 
reference, astore_<n>, 185
LocalVariableTable_attribute structure
(Code_attribute structure), 130
locks
See also IllegalMonitorStateException; monitors; threads 
(chapter), 397 
ACC_SYNCHONIZED flag, field_info structure, 114 
definition, 12, 59 
errors, IllegalMonitorStateException thrown, 44 
interaction with variables, rules about, 403 
managing shared variables with, 31 
multithreaded synchronization with, 60 
rules about, 402 
structured use of, 413 
synchronization and, 412 
synchronized method use of, 33
long type
adding, ladd, 309 
ANDing, bitwise, land, 311 
comparing, lcmp, 313 
constant, CONSTANT_Long_info structure representation, syntax and item descriptions, 108 
converting
double to, d2l, 197 
float to, f2l, 227 
int to, i2l, 258 
to double, l2d, 306 
to float, l2f, 307 
to int, l2i, 308
definition, 62 
dividing, ldiv, 318 
loading
from arrays, laload, 310 
from local variables, lload, 319 
from local variables, lload_<n>, 320
multiplying, lmul, 321 
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negating, lneg, 322 
ORing
bitwise, exclusive, lxor, 334 
bitwise, inclusive, lor, 325
pushing
constants, lconst_<l>, 314 
wide index, ldc2_w, 317
remainder, lrem, 326 
returning from method invocation, lreturn, 327 
shift left, lshl, 328 
shift right
arithmetic, lshr, 329 
logical, lushr, 333
storing into
arrays, lastore, 312 
local variables, lstore, 330 
local variables, lstore_<n>, 331
subtracting, lsub, 332 
value range, 63
lookupswitch instruction
See also tableswitch instruction 
code array alignment effect, 121 
compilation examples, compiling switches, 385 
constraints, static, 134 
definition, 323
lor instruction
definition, 325
low_bytes item
(CONSTANT_Double_info structure), 108 
(CONSTANT_Long_info structure), 108
lrem instruction
definition, 326
lreturn instruction
compilation examples, operand stack operations, 386 
constraints, structural, 138 
definition, 327
lshl instruction
definition, 328
lshr instruction
definition, 329
lstore instruction
constraints, static, 136 
definition, 330
lstore_<n> instructions
compilation examples, accessing the runtime constant pool, 371 
constraints, static, 136 
definition, 331
lsub instruction
definition, 332
lushr instruction
definition, 333
lxor instruction
definition, 334
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M
magic item

(ClassFile structure), 94
magic number
See also magic item 
verification of, 141
main method
invocation of on startup, 158, 46
major_version item
(ClassFile structure), 94
mapping
symbolic references to concrete values, as part of resolution, 165
max_locals item
(Code_attribute structure), 121
memory
allocation during instance creation, 54 
definition, 397 
garbage collection
and finalization, 56 
as memory management technique, 12
main, 397 
master, of variables, 397 
runtime data areas
heap, 68 
Java virtual machine stack, 67 
layout not specified by Java virtual machine specification, 62 
method area, 69 
native method stacks, 70 
pc register, 67 
runtime constant pool, 70
thread interaction with, ordering rules, 60 
working, 397
method area
definition, 69
method_info structure
(methods table of ClassFile structure), 114
methods
See also fields 
abrupt completion, 74 
abstract, 32 
abstract, as interface members, 36 
area
definition, 69 
runtime constant pool allocation from, 70
class
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invoking, invokestatic, 288
<clinit> method
as class or interface initialization method, 78 
constant_pool reference to, 106 
invocation of, static constraints, 135 
method_info structure access flags ignored, 116 
name_index item (method_info structure) reference, 116
code
location, 120 
size limitation, 152 
verification, Pass 3 - bytecode verifier, 143
compilation examples, 365 
constant pool references, verification process, 141 
constant_pool reference to, 106 
defineClass method, ClassLoader class, 161 
definition, 31 
derivation of symbolic references to at run time, 156 
descriptor
argument number limitation, 153 
syntax and meaning, 101 
as value of CONSTANT_Utf8_info structure referenced by descriptor_index item,
CONSTANT_NameAndType_info structure, 110
final, 33 
finalize method, 56 
<init> method
invocation of, static constraints, 135 
invocation of, structural constraints, 137 
name_index item (method_info), 116
initialization, 78 
instance
invoking, invokespecial, 284 
invoking, invokevirtual, 291
interface
invoking, invokeinterface, 280
invocation
conversion, 22 
conversion, context, 16 
expressions, access control and, 26 
instruction summary, 89 
structural constraints on instructions, 137
loadClass method, ClassLoader class, 161 
lookup
during resolution, 168 
dynamic, invokeinterface, 280 
dynamic, invokevirtual, 291
main method, invocation of, 158 
modifiers, 32 
native, 33
pc register state during invocation, 67 
stacks, 70
newInstance method, Class class, 12 
normal completion, 74 
notify method, multithreaded actions, 59 
notifyAll method, multithreaded actions, 59 

 M

376



number and size limitation, 152 
operand stack use by, 73 
private, 33 
protected, structural constraints, 138 
public, 32 
requirements for throwing exceptions, 123 
return
double value from, dreturn, 214 
float value from, freturn, 244 
instruction summary, 89 
int value from, ireturn, 296 
long value from, lreturn, 327 
reference value from, areturn, 182 
type, structural constraints on instructions, 138 
void from, return, 353
setDaemon method, creating daemon
threads with, 58
strictfp, 33 
String.intern, 6 
super, 34 
synchronization, instruction summary, 90 
synchronized methods, 33
double value return from, dreturn,  214 
float value return from, freturn, 244 
int value return from, ireturn, 296 
long value return from, lreturn, 327 
reference value return from, areturn, 182 
void return from, return, 353
table, preparation phase use of, 50 
uncaughtException method, exception handling use, 40, 42 
wait method, multithreaded actions, 59
methods table
(ClassFile structure), 98
methods_count item
(ClassFile structure), 98
minor_version item
(ClassFile structure), 94
monitor
See also IllegalMonitorStateException; locks 
definition, 59 
enter, monitorenter, 335 
exit, monitorexit, 337
monitorenter instruction
compilation examples, synchronization, 395 
definition, 335
monitorexit instruction
compilation examples, synchronization, 395 
definition, 337
multianewarray instruction
compilation examples, arrays, 383 
constraints, static, 136 
definition, 339
multiplying
double, dmul, 209 
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float, fmul, 239 
int, imul, 276 
long, lmul, 321
"must"
instruction description implications,  171
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N
name_and_type item

(CONSTANT_Fieldref_info structure), 105 
(CONSTANT_Interface_Methodref_info structure), 105 
(CONSTANT_Methodref_info structure), 105
name_index item
(CONSTANT_Class_info structure), 104 
(CONSTANT_NameAndType_info structure), 110 
(field_info structure), 114 
(LocalVariableTable_attribute structure), 132 
(method_info structure), 116
names
See also identifiers 
attributes, avoiding conflicts in, 118 
class, 28 
classes, internal representation, 99 
fully qualified, 26 
new attributes, 117 
qualified
access control and, 26 
definition, 24
simple, 24
NaN (Not-a-Number)
conversion of
bytes item, CONSTANT_Float_info structure into, 107 
high_bytes and low_bytes items, CONSTANT_Double_info structure, 109
operations that produce, 85
narrowing primitive conversions
See conversions, narrowing primitive
native method stack
definition, 70
native methods
binding, 170 
invoking
class, invokeinterface, 280 
class, invokevirtual, 291 
instance, invokespecial, 284 
instance, invokestatic, 288
pc register state during invocation, 67
native modifier
See also ACC_NATIVE flag; binding; native method 
definition, 33
negating
double, dneg, 211 
float, fneg, 241 
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int, ineg, 277 
long, lneg, 322
NegativeArraySizeException
definition, 44 
thrown by
anewarray, 181 
multianewarray, 340 
newarray, 344
new instruction
compilation examples
arrays, 382 
throwing exceptions, 387 
working with class instances, 379
constraints, static, 136 
data-flow analysis during class file verification, 147 
definition, 341
newarray instruction
compilation examples, arrays, 382 
constraints, static, 136 
definition, 343
NoClassDefFoundError
definition, 49 
as loading process error, 45 
thrown during class or interface loading, 160, 163 
when thrown during initialization, 53
nonterminal symbols
descriptor grammar notation, 99
nop instruction
definition, 345
normal completion
method invocation, 74
NoSuchFieldError
definition, 51 
as linking error, 45 
thrown during field resolution, 167
NoSuchMethodError
definition, 51 
as linking error, 45 
thrown during method resolution, 169
notation
class file format descriptions, 93 
field and method descriptor grammar, 99 
instruction families, 84
notification
notify method, multithreaded actions, 59 
notifyAll method, multithreaded actions, 59 
wait sets and, 413
null reference
null literal, 6 
null type, 6
null reference
definition, 66 
pushing null reference, aconst_null, 178 
testing for, 89
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NullPointerException
definition, 44 
thrown by
aaload, 175 
aastore, 177 
arraylength, 183 
athrow, 186 
baload, 188 
bastore, 189 
caload, 191 
castore, 192 
daload, 200 
dastore, 201 
faload, 230 
fastore, 231 
getfield, 249 
iaload, 261 
iastore, 263 
invokeinterface, 282 
invokespecial, 287, 293 
laload, 310 
lastore, 312 
monitorenter, 335 
monitorexit, 337 
putfield, 349 
saload, 354 
sastore, 355
number_of_classes item
(InnerClasses_attribute structure), 125
number_of_exceptions item
(Exceptions_attribute structure), 124
numeric
comparisons, implications of unordered NaN values, 65 
conversions
binary promotion, 23 
narrowing impact on precision, 87 
narrowing, support for, 86 
unary promotion, 23 
widening, impact on precision, 86
promotions, 16 
types
components, 7, 62 
promotion conversion, context, 17

Contents | Prev | Next | Index

The JavaTM Virtual Machine Specification
Copyright &#169 1999 Sun Microsystems, Inc. All rights reserved
Please send any comments or corrections to jvm@java.sun.com

 N

381

mailto:jvm@java.sun.com


 N

382



Contents | Prev | Next | Index The JavaTM Virtual Machine Specification

symbols A B C D E F G H I J L M N O P Q R S T U V W Z

O
Object class

definition, 12
objects
See also array; instances 
definition, 11
opcodes
definition, 80 
mnemonics by opcode (table), 415 
reserved, 172
operand stack
allocation, 73 
code verification, Pass 3 - bytecode verifier, 143 
data-flow analysis, 142 
definition, 73 
duplicating value(s)
dup, 218 
dup_x1, 219 
dup_x2, 220 
dup2, 221 
dup2_x1, 222 
dup2_x2, 223
frames used to hold, 73 
management instruction summary, 88 
merging, during data-flow analysis, 145 
pop value(s)
pop, 346 
pop2, 347
size limitation, 152 
structural constraints on instructions, 137 
swap values, swap, 357
operand(s)
constraints, static, 134 
definition, 80 
implicit, compilation advantage of, 366 
instructions, verification process, 143 
Java virtual machine instructions, storage order and alignment, 80 
types, how distinguished by Java virtual machine instruction set, 62
optimization
alternative instruction use, 143
ordered values
NaN values not ordered, implications of, 65
ORing
int
bitwise, exclusive, ixor, 303 
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bitwise, inclusive, ior, 294
long
bitwise, exclusive, lxor, 334 
bitwise, inclusive, lor, 325
outer_class_info_index item
(classes array of InnerClasses_attribute structure), 126
OutOfMemoryError
heap-related error, 69 
as Java virtual machine error, 45 
Java virtual machine stack-related error, 68 
method area-related error, 69 
native method stack-related error, 71 
runtime constant pool-related error, 70 
when thrown during initialization, 54
overflow
floating-point, Java virtual machine handling, 85 
heap, 69 
integer data types, not detected by Java virtual machine, 85 
Java virtual machine stack, 68 
method area, 69 
native method stack, 71 
runtime constant pool, 70
overriding
ACC_FINAL flag, method_info structure prevention of, 115 
definition, 26 
in interfaces, 37 
methods, 31
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P
packages

definition, 24 
members of, 25 
package private access, 169 
runtime package, 159
parameters
See also local variables 
descriptor, syntax and meaning, 101 
formal, 32
pc (program counter) register
definition, 67
performance
implications, opcode design and alignment, 80
pop instruction
definition, 346
pop2 instruction
definition, 347
popping
operand stack value(s)
pop, 346 
pop2, 347
pound sign (#)
use in compilation example, 364
precise exception
definition, 43
precision
See also numeric 
narrowing numeric conversion impact on, 87 
widening numeric conversion impact on, 86
preparation
definition, 50 
overview, 47 
as part of linking, 164
prescient store
action, with threads, 404
primitive
See also conversions; floating-point; integers 
types
definition, 62 
as Java virtual machine data type, 61
values, 62
private modifier
See also ACC_PRIVATE flag 
access implications, 27 
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enforcement, 169 
in method declarations, 33 
methods
invoking, invokespecial, 284
program counter
See pc (program counter) register
protected modifier
See also ACC_PROTECTED flag 
access implications, 27 
enforcement, 169 
fields, structural constraints, 138 
methods, structural constraints, 138
public modifier
See also ACC_PUBLIC flag 
access implications, 27 
class, 28 
enforcement, 169 
methods, 32
pushing
byte, bipush, 190 
constants
ldc, 315 
wide index, ldc_w, 316
double
dconst_<d>, 204 
wide index, ldc2_w, 317
float, fconst_<f>, 234 
int, iconst_<i>, 264 
long
constants lconst_<l>, 314 
wide index, ldc2_w, 317
null object references, aconst_null, 178 
short, sipush, 356
putfield instruction
compilation examples
operand stack operations, 386 
working with class instances, 381
constraints
static, 135 
structural, 138, 139
definition, 348
putstatic instruction
constraints
static, 135 
structural, 139
definition, 350
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Q
qualified access

definition, 26
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R
recursion

controlling runaway
Java virtual machine stack size limit use for, 68 
native method stack size limit use for, 71
reference type
branch if reference
comparison succeeds, if_acmp<cond>, 266 
is null, ifnull, 272 
not null, ifnonnull, 271
determining if an object is a particular
instanceof, 278
Java virtual machine
handling of, 62 
data type, 61
null, testing for, 89 
values, 11
components and, 66
reference(s)
field, resolution of, 167 
final fields, 30 
symbolic, mapping to concrete values as part of resolution, 165
reflection
as reason for initialization, 170 
Java virtual machine support for, 91
register
program counter (pc), 67
remainder
double, drem, 212 
float, frem, 242 
int, irem, 295 
long, lrem, 326
representation
internal, class names, 99
reserved opcodes
breakpoint, 172 
impdep1, 172 
impdep2, 172
resolution
as part of linking, 166 
class and interface, 166 
definition, 50 
errors
AbstractMethodError, thrown during method resolution, 168 
ClassCircularityError, thrown during class or interface resolution, 164 
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IllegalAccessError, thrown during class or interface resolution, 167 
IllegalAccessError, thrown during field resolution, 167 
IllegalAccessError, thrown during method resolution, 168 
IncompatibleClassChangeError, thrown during class or interface resolution, 164 
IncompatibleClassChangeError, thrown during interface method resolution, 169 
IncompatibleClassChangeError, thrown during method resolution, 168 
NoSuchFieldError, thrown during field resolution, 167 
NoSuchFieldError, thrown during interface method resolution, 169 
NoSuchFieldError, thrown during method resolution, 168
field, 167 
instructions causing
anewarray, 181 
checkcast, 193 
getfield, 248 
getstatic, 250 
instanceof, 278 
invokeinterface, 280 
invokespecial, 284 
invokestatic, 288 
invokevirtual, 291 
multianewarray, 339 
new, 341 
putfield, 348 
putstatic, 350
lazy, 49 
method, instance or class, 167 
method, interface, 168 
overview, 47 
static, 49 
types of, 47
ret instruction
See also jsr instruction; jsr_w instruction 
compilation examples, compiling finally, 392, 394 
constraints
static, 136 
structural, 139
definition, 352 
returnAddress type used by, 66 
try-finally clause implementation use, Sun's Java compiler output characteristics, 150
return
descriptor, syntax and meaning, 102 
from method
double value, dreturn, 214 
float value, freturn, 244 
int value, ireturn, 296 
long value, lreturn, 327 
void, return, 353
from subroutine, ret, 352 
reference value, areturn, 182 
type, method, structural constraints on instructions, 138
return instruction
compilation examples
arrays, 382, 383 
catching exceptions, 388, 389, 390, 391 
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compiling finally, 392, 393 
constants and local variables in a for loop, 365, 367, 369 
while loop, 372, 373 
working with class instances, 379, 381 
throwing exceptions, 387, 388
constraints, structural, 138 
definition, 353
returnAddress type
characteristics and values, 66 
definition, 62 
instance constraints, 139 
local variable constraints, 139
right parentheses )
meaning in method descriptor, 102
round to nearest
See also numeric 
definition, 11, 85
round towards zero
definition, 11, 85
runFinalizersOnExit method
Java virtual machine exit role, 57
runtime
class files verification issues, 140 
data areas
heap, 68 
Java virtual machine stack, 67 
method area, 69 
native method stacks, 70 
pc register, 67 
runtime constant pool, 70
RuntimeException as Exception class direct subclass, 43 
type, as incorrect terminology, 15
RuntimeException
as Throwable class direct subclass, 43
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S
S character

meaning in field or method descriptor, 101
saload instruction
definition, 354
sastore instruction
definition, 355
security
See also access_flags item 
verification of class files, 140
SecurityException
definition, 44
semantics
attributes, optional, 116 
integer and floating-point operator support, 85 
invokespecial instruction, access flag use to select alternatives, 96 
Java virtual machine, strategies for implementing, 92 
types that have no direct integer arithmetic support, 84
shadowing
See overriding
shift
left int, ishl, 297 
left long, lshl, 328 
right int
arithmetic, ishr, 298 
logical, iushr, 302
right long
arithmetic, lshr, 329 
logical, lushr, 333
short type
converting int to, i2s, 259 
definition, 62 
instruction set handling, 81 
integer arithmetic not directly supported, 84 
loading from arrays, saload, 354 
pushing, sipush, 356 
storing into arrays, sastore, 355 
value range, 63
signature
definition, 32
sipush instruction
definition, 356
size
operand stacks, 73 
Sun's JDK and Java 2 SDK
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heap, setting with -ms and -mx flags, 69 
Java virtual machine stack, setting with -oss flag, 68 
method area, constraints, 69 
native method stacks, setting with -ss flag, 71
slashes
class name use, 99
SourceFile_attribute structure
(attributes table of ClassFile structure), 128
sourcefile_index item
(SourceFile_attribute structure), 129
StackOverflowError
definition, 45 
as Java virtual machine stack-related error, 68 
as native method stack-related error, 71
stacks
errors
OutOfMemoryError, 71 
StackOverflowError, 68, 71
Java, 67 
Java virtual machine
frames allocated from, 71 
size, setting with -oss flag, Sun's JDK and Java 2 SDK, 68
native method, 70
size, setting with -oss flag, Sun's JDK and Java 2 SDK, 68
operand
code verification, Pass 3 - bytecode verifier, 143 
data-flow analysis, 142 
duplicating value(s), dup2, 221 
duplicating value(s), dup2_x1, 222 
duplicating value(s), dup2_x2, 223 
duplicating value, dup, 218 
duplicating value, dup_x1, 219 
duplicating value, dup_x2, 220 
management instruction summary, 88 
maximum depth, 121 
merging, during data-flow analysis, 145 
pop value(s), pop2, 347 
pop value, pop, 346 
size limitation, 152 
structural constraints on instructions, 137 
swap values, swap, 357
standards
IEEE 754, 7
adding double, conformance, dadd, 198 
adding float, conformance, fadd, 228 
comparing double, conformance, dcmp<op>, 202 

comparing float, conformance, fcmp<op>, 232 
dividing double, conformance, ddiv, 205 
dividing float, conformance, fdiv, 235 
floating-point comparison, conformance, 85, 89 
floating-point double format bit layout, high_bytes and low_bytes items, 109 
floating-point operation conformance to, 85 
multiplying double, conformance, dmul, 209 
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multiplying float, conformance, fmul, 239 
remainder, drem not the same as, drem, 212 
remainder, frem not the same as, frem, 242 
subtracting double, conformance, dsub, 217 
subtracting float, conformance, fsub, 247
UTF-8 format, bibliographic reference, 111
start_pc item
(exception_table array of Code_attribute structure), 122 
(line_number_table array of LineNumberTable_attribute structure), 130 
(local_variable_table array of LocalVariableTable_attribute structure), 132
startup
Java virtual machine, 46, 158
static modifier
See also ACC_STATIC modifier; class(es) 
fields
get from classes, getstatic, 250 
put into classes, putstatic, 350
initializers, 33
execution of during initialization, 51 
not members of a class, 29
methods
invoking, invokestatic, 288
storage
automatic management system, garbage collection as, 68 
data, frame use for, 71 
frame allocation, 71 
runtime data areas
heap, 68 
Java virtual machine stack, 67 
method area, 69 
native method stacks, 70 
pc register, 67 
runtime constant pool, 70
storing
into arrays of type
byte or boolean, bastore, 189 
char, castore, 192 
double, dastore, 201 
float, fastore, 231 
int, iastore, 263 
long, lastore, 310 
reference, aastore, 176 
short, sastore, 355
into local variables of type
double, dstore, 215 
double, dstore_<n>, 216 
float, fstore, 245 
float, fstore_<n>, 246 
int, istore, 299 
int, istore_<n>, 300 
long, lstore, 330 
long, lstore_<n>, 331 
reference, astore, 184 
reference, astore_<n>, 185
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strictfp modifier
See also ACC_STRICT flag, FP-strict floating-point mode 
definition
class, 28 
in method declarations, 33
String class
definition, 12
string_index item
(CONSTANT_String_info structure), 106
strings
See also String class, CONSTANT_Utf8_info structure 
conversion context, 16 
definition, 6 
String new instances creation triggered by, 54
structures
class file structures, 93
subclass
definition, 29
subpackages
definition, 25
subroutine
jump to
jsr, 304 
wide index, jsr_w, 305
return from, ret, 352
subtracting
double, dsub, 217 
float, fsub, 247 
int, isub, 301 
long, lsub, 332
super_class item
(ClassFile structure), 97
super method
definition, 34
superclasses
See also ACC_SUPER flag 
checking for, 141 
definition, 29 
super method as constructor invocation, 34 
super modifier
accessing, overridden methods with, 32
superinterfaces
definition, 36
swap instruction
definition, 357
swapping
operand stack values, swap, 357 
swap instruction, operand stack manipulation constraints, 73 
threads example, 406
symbolic references
deriving from class or interface representation, 156 
resolving, 165
symbols
See names
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synchronization
See also ACC_SYNCHRONIZED flag; threads 
compilation examples, 394 
exception handling integration with, 40 
locks, 412 
synchronized method
double value return from, dreturn, 214 
float value return from, freturn, 244 
int value return from, ireturn, 296 
long value return from, lreturn, 327 
reference value return from, areturn, 182 
void value return from, return, 353
synchronized modifier
in method declarations, 33 
multithreaded actions, 59 
operations, 412 
specification, 412 
thread-memory interaction, ordering rules, 60
syntax
class file specification, 94 
field and method descriptor grammar, 99 
internal form of class and interface names, 99
Synthetic_attribute structure
(attributes table of field_info or method_info structure), 127
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T
tables

in class file specification, 93
tableswitch instruction
See also lookupswitch instruction 
code array alignment effect, 121 
compilation examples, compiling switches, 384 
constraints, static, 134 
definition, 358
tag item
(CONSTANT_Class_info structure), 104 
(CONSTANT_Double_info structure), 109 
(CONSTANT_Fieldref_info structure), 105 
(CONSTANT_Integer_info structure), 107 
(CONSTANT_InterfaceMethodref_info structure), 105 
(CONSTANT_Long_info structure), 109 
(CONSTANT_Methodref_info structure), 105 
(CONSTANT_NameAndType_info structure), 110 
(CONSTANT_String_info structure), 106 
(CONSTANT_Utf8_info structure), 112
term definitions
abrupt completion, 74 
abstract
class, 28 
method, 32
array, 38
access expression, 39 
component, 38 
component type, 38 
component, as kind of variable, 13 
creation expression, 12, 39 
element, 38 
element type, 38 
empty, 38 
initializer, 39 
length of, 38 
type, 11 
variable, 38
ASCII, 6 
assign, as thread action, 398 
assignable, 21 
assignment
compatible, 13, 21
binding, of native methods, 170 
bootstrap class loader, 158 
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bytecode, 2 
caller, 41 
catch clause, 40 
caught, 40 
class
abstract, 28 
creation, 158 
current, 72 
declaration, 28 
final, 28 
initial, 46, 158 
instance, 12 
instance creation expression, 12 
method, 33 
modifier, 28 
public, 28 
strictfp, 28 
type, 11 
variable, 13
class loader
bootstrap, 158, 160 
defining, 159 
delegating, 159 
initiating, 159 
user-defined, 158, 160
compile-time type, 13 
complete abruptly, 40 
constant field, 52 
constant pool
class file format, 103 
runtime, 70
constructor, 34
default, 34 
parameter, as kind of variable, 14
conversion
assignment, 21 
binary numeric promotion, 23 
casting, 23 
context, 16 
method invocation, 22 
narrowing primitive, 18 
narrowing reference, 19 
unary numeric promotion, 23 
widening primitive, 17 
widening reference, 19
current frame, 71 
default value, 14 
denormalized, 11
floating-point number, 85
descriptor, 99 
direct
directly implement, 35 
extension, 35 
subclass, 29 
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superclass, 29 
superinterface, 36
dynamically enclosed, 41 
exception, 39
class, 41 
handler parameter, as kind of variable, 14
extends clause, 29 
field, 29
final, 30 
private, 30 
protected, 30 
public, 30 
static, 30 
transient, 30 
volatile, 31
final
class, 28 
field, 30 
method, 33
finalizer, 56 
floating-point type, 62, 63 
formal parameter, 32 
garbage collection, 12 
gradual underflow, 11 
handle, 41, 75 
heap, 68 
hiding, 30 
identifier, 6 
implement, 36 
inheritance, 29 
initial class, 158 
initialization, 51, 170 
instance
method, 33 
variable, 13
interface, 35
type, 11
item, 93 
Java virtual machine stack, 67 
JIT (just-in-time) code generation, 363 
lazy resolution, 49 
linking, 164 
literal, 6
false, 6 
null, 6 
true, 6
loading, class or interface, 158 
local variable, 14, 72 
lock, 12, 59, 397 
lock action, by main memory subsystem, 399 
operation, action by thread, 399 
unlock action, by main memory subsystem, 399
master copy, 397 
meaning of "must" in instruction descriptions, 171 
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member, 25
class, 28
memory
main, 397 
working, 397
method, 31
abstract, 32 
area, 69 
current, 71 
final, 33 
main, 158 
main, 46 
native, 33 
parameter, as kind of variable, 13 
private, 33 
protected, 32 
public, 32 
static, 33 
strictfp, 33 
synchronized, 33
monitor, 59 
name
class, 28 
qualified, 24 
simple, 24
native method, 33 
native method stack, 70 
normal completion, 74 
null reference, 66 
numeric
promotion, 16 
types, 62
object, 11, 62 
opcode, 80 
operand, 80
stack, 73
overloading, 26
in interfaces, 37
overriding, 26
in interfaces, 37
package, 24 
pc register, 67 
pointer, 12 
precise exception, 43 
preparation, 50, 164 
primitive
type, 7 
types, 62 
value, 7 
values, 62
private
field, 30 
method, 32
protected method, 32 
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public
class, 28 
field, 30 
method, 32
qualified access, 26 
read action by thread, 398 
reference
type, 11, 66 
value, 12
resolution, 50, 165 
returnAddress type, 62 
round to nearest, 11, 85 
round towards zero, 11, 85 
runtime constant pool, 70 
signature, 32 
static
initializer, 33 
resolution, 49
static
field, 30 
method, 33
store action by thread, 399 
strictfp
class, 28 
method, 33
string, 6 
subclass, 29 
super method, 34 
superclass, 29 
superinterface, 36 
symbolic reference, 156 
synchronized method, 33 
synchronizing, 58 
this object, 33 
thrown, 39 
transient field, 30 
try statement, 40 
unloading, class or interface, 57 
unlock action by thread, 399 
use
actions by threads, 398 
of values, by thread, 59
user-defined class loader, 158, 160 
variable, 13, 397
class, 30 
instance, 30 
transient, 30
verification, 164 
version skew, 140 
volatile field, 31 
wait set, 413 
working copy, 397 
write action by thread, 399
terminal symbols

 T

403



descriptors grammar notation, 99
this_class item
(ClassFile structure), 97
this object
definition, 33 
instance creation role, 55 
locks use with, 33
threads
See also synchronization 
(chapter), 397 
actions, 397 
constraints on relationships among actions of, 399 
creation, 412 
definition, 58 
frames use with, 71 
Java virtual machine stack, 67 
memory interaction with, ordering rules, 60 
native method stacks, 70 
pc register, 67 
shared
data areas, heap, 68 
data areas, method area, 69 
variables, mechanisms for handling, 31
synchronization issues during initialization, 52
Throwable class
exceptions as instances or subclasses of, 40
throwing
exceptions, athrow, 186 
throw statement, as exception cause, 41 
Throwable as exception hierarchy root, 43 
Throwable exceptions as instances or subclasses, 40
timing
dependencies, in concurrent programming, 59
transient modifier
See also ACC_TRANSIENT flag 
definition, 30
try-catch-finally statement
See also exceptions 
as exception handling statement, 79 
exception handling use of, 42
try-finally statement
See also exceptions 
exception handling use of, 42 
Sun's Java compiler output characteristics, 149
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U
u1

as class file data type, 93
u2
as class file data type, 93
u4
as class file data type, 93
underflow
floating-point, Java virtual machine handling, 85 
integer data types, not signaled by Java virtual machine, 85
Unicode
bibliographic reference, 5 
characteristics, 5
UnknownError
as Java virtual machine error, 46
unloading
class or interface, 57
UnsatisfiedLinkError
See also binding; LinkageError; native method 
definition, 45 
thrown by
invokeinterface, 282 
invokespecial, 287 
invokestatic, 290 
invokevirtual, 293
UnsupportedClassVersionError
definition, 49
UTF-8 format
See also CONSTANT_Utf8_info structure 
bibliographic reference, 111 
standard, differences between Java virtual machine UTF-8 strings and, 111
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V
V character

meaning in method descriptor, 102
value set conversion
definition, 77
values
concrete, mapping symbolic references to, as part of resolution, 165 
default, 14 
floating-point, 7 
primitive, 7 
return, frame use for, 72
variables
See also constants; literals 
array type, 38 
definition, 13 
double nonatomic treatment of, memory operations on, 402 
initial values of, 14 
interaction with locks, rules about, 403 
kinds of, 13 
local
accessing, structural constraints on instructions, 137 

code verification, Pass 3 - bytecode verifier, 144 
definition, 14 
exception handling impact on, 79 
extend index by additional bytes, wide, 360 
frames used to hold, 71 
instruction specialized to handle, advantages of, 366 
instructions for accessing more, summary, 84 
load and store instructions, summary, 82 
loading double from, dload, 207 
loading double from, dload_<n>, 208 
loading float from, fload, 237 
loading float from, fload_<n>, 238 
loading int from, iload, 274 
loading int from, iload_<n>, 275 
loading long from, lload, 319 
loading long from, lload_<n>, 320 
loading reference from, aload, 179 
loading reference from, aload_<n>, 180 
maximum number, 121 
number limitation, 152 
reuse, advantages of, 366 
states, merging, during data-flow analysis, 145 
storing double into, dstore, 215 
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storing double into, dstore_<n>, 216 
storing float into, fstore, 245 
storing float into, fstore_<n>, 246 
storing int into, istore, 299 
storing int into, istore_<n>, 300 
storing long into, lstore, 330 
storing long into, lstore_<n>, 331 
storing reference into, astore, 184 
storing reference into, astore_<n>, 185
long nonatomic treatment of, memory operations on, 402 
of a class, fields defined as, 29 
of an instance, 30 
shared
multithreaded actions, 59 
state among, 12
thread use constraints, 400 
transient, 30 
volatile rules about, 404
verification
class files, 140
compiler and language independence, 141 
procedures, 141
definition, 49 
errors
VerifyError, meaning of, 50 
VerifyError, thrown during class or interface verification, 165
overview, 47 
as part of linking, 164
VerifyError
definition, 50 
thrown during class or interface linking, 165
versions
binary compatibility issues, 140 
major, major_version item (ClassFile structure) representation of, 94 
minor, minor_version item (ClassFile structure) representation of, 94, 95
VirtualMachineError
definition, 45 
reasons for throwing instances of, 172
void
field descriptor specification, 102 
returning from method invocation, return, 353
volatile modifier
See also ACC_VOLATILE flag 
variables, rules about, 404
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W
wait

See also locks; threads; notification 
wait method, multithreaded actions, 59 
wait sets, notification and, 413
while keyword
compilation examples, 372
wide instruction
constraints, static, 134 
definition, 360
widening primitive conversions
See conversions, widening primitive 
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Z
Z character

meaning in field or method descriptor, 101

Mr. Lindholm's mother surely has many wonderful qualities, but we doubt anyone would consider her a
public interface to the Java Runtime Interpreter.

Sun Microsystems, Inc.'s Reply in Support of Its Motion for Preliminary Injunction Under 17 U.S.C. § 502
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